Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-exlimvmpi | Structured version Visualization version GIF version |
Description: A Fol lemma (exlimiv 1938 followed by mpi 20). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-exlimvmpi.maj | ⊢ (𝜒 → (𝜑 → 𝜓)) |
bj-exlimvmpi.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
bj-exlimvmpi | ⊢ (∃𝑥𝜒 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-exlimvmpi.min | . . 3 ⊢ 𝜑 | |
2 | bj-exlimvmpi.maj | . . 3 ⊢ (𝜒 → (𝜑 → 𝜓)) | |
3 | 1, 2 | mpi 20 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3 | exlimiv 1938 | 1 ⊢ (∃𝑥𝜒 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 |
This theorem depends on definitions: df-bi 210 df-ex 1788 |
This theorem is referenced by: bj-vtoclg 35007 |
Copyright terms: Public domain | W3C validator |