Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-exlimvmpi Structured version   Visualization version   GIF version

Theorem bj-exlimvmpi 35096
Description: A Fol lemma (exlimiv 1933 followed by mpi 20). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-exlimvmpi.maj (𝜒 → (𝜑𝜓))
bj-exlimvmpi.min 𝜑
Assertion
Ref Expression
bj-exlimvmpi (∃𝑥𝜒𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑥)

Proof of Theorem bj-exlimvmpi
StepHypRef Expression
1 bj-exlimvmpi.min . . 3 𝜑
2 bj-exlimvmpi.maj . . 3 (𝜒 → (𝜑𝜓))
31, 2mpi 20 . 2 (𝜒𝜓)
43exlimiv 1933 1 (∃𝑥𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  bj-vtoclg  35105
  Copyright terms: Public domain W3C validator