Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-csbprc | Structured version Visualization version GIF version |
Description: More direct proof of csbprc 4340 (fewer essential steps). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3833 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | sbcex 3726 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | 2 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝑦 ∈ 𝐵) |
4 | 3 | alrimiv 1930 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∀𝑦 ¬ [𝐴 / 𝑥]𝑦 ∈ 𝐵) |
5 | bj-ab0 35093 | . . 3 ⊢ (∀𝑦 ¬ [𝐴 / 𝑥]𝑦 ∈ 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = ∅) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = ∅) |
7 | 1, 6 | eqtrid 2790 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 Vcvv 3432 [wsbc 3716 ⦋csb 3832 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-nul 4257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |