![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-csbprc | Structured version Visualization version GIF version |
Description: More direct proof of csbprc 4278 (fewer essential steps). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3812 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | sbcex 3716 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | 2 | con3i 157 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝑦 ∈ 𝐵) |
4 | 3 | alrimiv 1905 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∀𝑦 ¬ [𝐴 / 𝑥]𝑦 ∈ 𝐵) |
5 | bj-ab0 33799 | . . 3 ⊢ (∀𝑦 ¬ [𝐴 / 𝑥]𝑦 ∈ 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = ∅) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = ∅) |
7 | 1, 6 | syl5eq 2843 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1520 = wceq 1522 ∈ wcel 2081 {cab 2775 Vcvv 3437 [wsbc 3706 ⦋csb 3811 ∅c0 4211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-nul 4212 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |