| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-csbprc | Structured version Visualization version GIF version | ||
| Description: More direct proof of csbprc 4375 (fewer essential steps). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3866 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | sbcex 3766 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝑦 ∈ 𝐵) |
| 4 | 3 | alrimiv 1927 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∀𝑦 ¬ [𝐴 / 𝑥]𝑦 ∈ 𝐵) |
| 5 | bj-ab0 36903 | . . 3 ⊢ (∀𝑦 ¬ [𝐴 / 𝑥]𝑦 ∈ 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = ∅) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = ∅) |
| 7 | 1, 6 | eqtrid 2777 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 [wsbc 3756 ⦋csb 3865 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |