| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vtoclg | Structured version Visualization version GIF version | ||
| Description: A version of vtoclg 3537 with an additional disjoint variable condition (which is removable if we allow use of df-clab 2713, see bj-vtoclg1f 36894), which requires fewer axioms (i.e., removes dependency on ax-6 1966, ax-7 2006, ax-9 2117, ax-12 2176, ax-ext 2706, df-clab 2713, df-cleq 2726, df-v 3465). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vtoclg.maj | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
| bj-vtoclg.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| bj-vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elissetv 2814 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | bj-vtoclg.maj | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
| 3 | bj-vtoclg.min | . . 3 ⊢ 𝜑 | |
| 4 | 2, 3 | bj-exlimvmpi 36887 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∃wex 1778 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-clel 2808 |
| This theorem is referenced by: bj-zfauscl 36900 |
| Copyright terms: Public domain | W3C validator |