Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vtoclg | Structured version Visualization version GIF version |
Description: A version of vtoclg 3505 with an additional disjoint variable condition (which is removable if we allow use of df-clab 2716, see bj-vtoclg1f 35103), which requires fewer axioms (i.e., removes dependency on ax-6 1971, ax-7 2011, ax-9 2116, ax-12 2171, ax-ext 2709, df-clab 2716, df-cleq 2730, df-v 3434). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-vtoclg.maj | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
bj-vtoclg.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
bj-vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elissetv 2819 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | bj-vtoclg.maj | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
3 | bj-vtoclg.min | . . 3 ⊢ 𝜑 | |
4 | 2, 3 | bj-exlimvmpi 35096 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∃wex 1782 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clel 2816 |
This theorem is referenced by: bj-zfauscl 35112 |
Copyright terms: Public domain | W3C validator |