Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vtoclg Structured version   Visualization version   GIF version

Theorem bj-vtoclg 35105
Description: A version of vtoclg 3505 with an additional disjoint variable condition (which is removable if we allow use of df-clab 2716, see bj-vtoclg1f 35103), which requires fewer axioms (i.e., removes dependency on ax-6 1971, ax-7 2011, ax-9 2116, ax-12 2171, ax-ext 2709, df-clab 2716, df-cleq 2730, df-v 3434). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-vtoclg.maj (𝑥 = 𝐴 → (𝜑𝜓))
bj-vtoclg.min 𝜑
Assertion
Ref Expression
bj-vtoclg (𝐴𝑉𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-vtoclg
StepHypRef Expression
1 elissetv 2819 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 bj-vtoclg.maj . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
3 bj-vtoclg.min . . 3 𝜑
42, 3bj-exlimvmpi 35096 . 2 (∃𝑥 𝑥 = 𝐴𝜓)
51, 4syl 17 1 (𝐴𝑉𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wex 1782  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-clel 2816
This theorem is referenced by:  bj-zfauscl  35112
  Copyright terms: Public domain W3C validator