Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-genan Structured version   Visualization version   GIF version

Theorem bj-genan 34336
Description: Generalization rule on a conjunction. Forward inference associated with 19.26 1871. (Contributed by BJ, 7-Jul-2021.)
Hypothesis
Ref Expression
bj-genr.1 (𝜑𝜓)
Assertion
Ref Expression
bj-genan (∀𝑥𝜑 ∧ ∀𝑥𝜓)

Proof of Theorem bj-genan
StepHypRef Expression
1 bj-genr.1 . . . 4 (𝜑𝜓)
21simpli 487 . . 3 𝜑
32ax-gen 1797 . 2 𝑥𝜑
41simpri 489 . . 3 𝜓
54ax-gen 1797 . 2 𝑥𝜓
63, 5pm3.2i 474 1 (∀𝑥𝜑 ∧ ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wa 399  wal 1536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator