| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.26 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| 19.26 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
| 6 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 7 | 6 | alanimi 1816 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
| 8 | 5, 7 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 19.26-2 1871 19.26-3an 1872 19.43OLD 1883 albiim 1889 2albiim 1890 19.27v 1989 19.28v 1990 19.27 2227 19.28 2228 r19.26m 3097 raleqbidvvOLD 3314 unss 4165 ralunb 4172 ssin 4214 falseral0 4491 intun 4956 intprg 4957 eqrelrel 5776 relop 5830 eqoprab2bw 7477 eqoprab2b 7478 dfer2 8720 axgroth4 10846 grothprim 10848 trclfvcotr 15028 caubnd 15377 bj-gl4 36613 bj-nnfand 36767 bj-elgab 36957 wl-alanbii 37587 ax12eq 38959 ax12el 38960 alan 42689 dford4 43053 elmapintrab 43600 elinintrab 43601 ismnuprim 44318 alimp-no-surprise 49645 |
| Copyright terms: Public domain | W3C validator |