| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.26 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| 19.26 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
| 6 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 7 | 6 | alanimi 1816 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
| 8 | 5, 7 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 19.26-2 1871 19.26-3an 1872 19.43OLD 1883 albiim 1889 2albiim 1890 19.27v 1995 19.28v 1996 19.27 2228 19.28 2229 r19.26m 3090 raleqbidvvOLD 3305 unss 4149 ralunb 4156 ssin 4198 falseral0 4475 intun 4940 intprg 4941 eqrelrel 5751 relop 5804 eqoprab2bw 7439 eqoprab2b 7440 dfer2 8649 axgroth4 10761 grothprim 10763 trclfvcotr 14951 caubnd 15301 bj-gl4 36556 bj-nnfand 36710 bj-elgab 36900 wl-alanbii 37530 ax12eq 38907 ax12el 38908 alan 42627 dford4 42991 elmapintrab 43538 elinintrab 43539 ismnuprim 44256 alimp-no-surprise 49743 |
| Copyright terms: Public domain | W3C validator |