![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.26 | Structured version Visualization version GIF version |
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
19.26 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | alimi 1806 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜑) |
3 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | alimi 1806 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜓) |
5 | 2, 4 | jca 510 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
6 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
7 | 6 | alanimi 1811 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
8 | 5, 7 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∀wal 1532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: 19.26-2 1867 19.26-3an 1868 19.43OLD 1879 albiim 1885 2albiim 1886 19.27v 1986 19.28v 1987 19.27 2216 19.28 2217 r19.26m 3100 raleqbidvvOLD 3320 unss 4182 ralunb 4189 ssin 4229 falseral0 4514 intun 4980 intprg 4981 intprOLD 4983 eqrelrel 5795 relop 5849 eqoprab2bw 7487 eqoprab2b 7488 dfer2 8727 axgroth4 10866 grothprim 10868 trclfvcotr 15009 caubnd 15358 bj-gl4 36313 bj-nnfand 36467 bj-elgab 36658 wl-alanbii 37277 ax12eq 38652 ax12el 38653 dford4 42724 elmapintrab 43280 elinintrab 43281 ismnuprim 44005 alimp-no-surprise 48565 |
Copyright terms: Public domain | W3C validator |