Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.26 | Structured version Visualization version GIF version |
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
19.26 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | alimi 1815 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜑) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | alimi 1815 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜓) |
5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
6 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
7 | 6 | alanimi 1820 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
8 | 5, 7 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: 19.26-2 1875 19.26-3an 1876 19.43OLD 1887 albiim 1893 2albiim 1894 19.27v 1994 19.28v 1995 19.27 2223 19.28 2224 r19.26m 3097 raleqbidvv 3329 unss 4114 ralunb 4121 ssin 4161 falseral0 4447 intun 4908 intprg 4909 intprOLD 4911 eqrelrel 5696 relop 5748 eqoprab2bw 7323 eqoprab2b 7324 dfer2 8457 axgroth4 10519 grothprim 10521 trclfvcotr 14648 caubnd 14998 bj-gl4 34704 bj-nnfand 34858 bj-elgab 35054 wl-alanbii 35651 ax12eq 36882 ax12el 36883 dford4 40767 elmapintrab 41073 elinintrab 41074 ismnuprim 41801 alimp-no-surprise 46371 |
Copyright terms: Public domain | W3C validator |