MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.26 Structured version   Visualization version   GIF version

Theorem 19.26 1870
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝜓) → 𝜑)
21alimi 1811 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜑)
3 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
43alimi 1811 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜓)
52, 4jca 511 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓))
6 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
76alanimi 1816 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
85, 7impbii 209 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  19.26-2  1871  19.26-3an  1872  19.43OLD  1883  albiim  1889  2albiim  1890  19.27v  1995  19.28v  1996  19.27  2228  19.28  2229  r19.26m  3090  raleqbidvvOLD  3305  unss  4149  ralunb  4156  ssin  4198  falseral0  4475  intun  4940  intprg  4941  eqrelrel  5751  relop  5804  eqoprab2bw  7439  eqoprab2b  7440  dfer2  8649  axgroth4  10761  grothprim  10763  trclfvcotr  14951  caubnd  15301  bj-gl4  36556  bj-nnfand  36710  bj-elgab  36900  wl-alanbii  37530  ax12eq  38907  ax12el  38908  alan  42627  dford4  42991  elmapintrab  43538  elinintrab  43539  ismnuprim  44256  alimp-no-surprise  49743
  Copyright terms: Public domain W3C validator