MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.26 Structured version   Visualization version   GIF version

Theorem 19.26 1874
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 484 . . . 4 ((𝜑𝜓) → 𝜑)
21alimi 1814 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜑)
3 simpr 486 . . . 4 ((𝜑𝜓) → 𝜓)
43alimi 1814 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜓)
52, 4jca 513 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓))
6 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
76alanimi 1819 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
85, 7impbii 208 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  19.26-2  1875  19.26-3an  1876  19.43OLD  1887  albiim  1893  2albiim  1894  19.27v  1994  19.28v  1995  19.27  2221  19.28  2222  r19.26m  3111  raleqbidvvOLD  3331  unss  4185  ralunb  4192  ssin  4231  falseral0  4520  intun  4985  intprg  4986  intprOLD  4988  eqrelrel  5798  relop  5851  eqoprab2bw  7479  eqoprab2b  7480  dfer2  8704  axgroth4  10827  grothprim  10829  trclfvcotr  14956  caubnd  15305  bj-gl4  35473  bj-nnfand  35627  bj-elgab  35819  wl-alanbii  36434  ax12eq  37811  ax12el  37812  dford4  41768  elmapintrab  42327  elinintrab  42328  ismnuprim  43053  alimp-no-surprise  47828
  Copyright terms: Public domain W3C validator