MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.26 Structured version   Visualization version   GIF version

Theorem 19.26 1870
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝜓) → 𝜑)
21alimi 1811 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜑)
3 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
43alimi 1811 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜓)
52, 4jca 511 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓))
6 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
76alanimi 1816 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
85, 7impbii 209 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  19.26-2  1871  19.26-3an  1872  19.43OLD  1883  albiim  1889  2albiim  1890  19.27v  1995  19.28v  1996  19.27  2228  19.28  2229  r19.26m  3090  raleqbidvvOLD  3308  unss  4153  ralunb  4160  ssin  4202  falseral0  4479  intun  4944  intprg  4945  eqrelrel  5760  relop  5814  eqoprab2bw  7459  eqoprab2b  7460  dfer2  8672  axgroth4  10785  grothprim  10787  trclfvcotr  14975  caubnd  15325  bj-gl4  36583  bj-nnfand  36737  bj-elgab  36927  wl-alanbii  37557  ax12eq  38934  ax12el  38935  alan  42654  dford4  43018  elmapintrab  43565  elinintrab  43566  ismnuprim  44283  alimp-no-surprise  49770
  Copyright terms: Public domain W3C validator