Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.26 | Structured version Visualization version GIF version |
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
19.26 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | alimi 1814 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜑) |
3 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | alimi 1814 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜓) |
5 | 2, 4 | jca 512 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
6 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
7 | 6 | alanimi 1819 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
8 | 5, 7 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: 19.26-2 1874 19.26-3an 1875 19.43OLD 1886 albiim 1892 2albiim 1893 19.27v 1993 19.28v 1994 19.27 2220 19.28 2221 r19.26m 3098 raleqbidvv 3336 unss 4117 ralunb 4124 ssin 4164 falseral0 4450 intun 4911 intprg 4912 intprOLD 4914 eqrelrel 5700 relop 5752 eqoprab2bw 7335 eqoprab2b 7336 dfer2 8486 axgroth4 10598 grothprim 10600 trclfvcotr 14730 caubnd 15080 bj-gl4 34785 bj-nnfand 34939 bj-elgab 35135 wl-alanbii 35732 ax12eq 36963 ax12el 36964 dford4 40859 elmapintrab 41165 elinintrab 41166 ismnuprim 41893 alimp-no-surprise 46463 |
Copyright terms: Public domain | W3C validator |