| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.26 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| 19.26 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | alimi 1812 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | alimi 1812 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
| 6 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 7 | 6 | alanimi 1817 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
| 8 | 5, 7 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 19.26-2 1872 19.26-3an 1873 19.43OLD 1884 albiim 1890 2albiim 1891 19.27v 1996 19.28v 1997 19.27 2230 19.28 2231 r19.26m 3091 raleqbidvvOLD 3301 unss 4137 ralunb 4144 ssin 4186 falseral0 4463 intun 4928 intprg 4929 eqrelrel 5736 relop 5789 eqoprab2bw 7416 eqoprab2b 7417 dfer2 8623 axgroth4 10723 grothprim 10725 trclfvcotr 14916 caubnd 15266 bj-gl4 36637 bj-nnfand 36791 bj-elgab 36981 wl-alanbii 37611 ax12eq 38988 ax12el 38989 alan 42707 dford4 43070 elmapintrab 43617 elinintrab 43618 ismnuprim 44335 alimp-no-surprise 49821 |
| Copyright terms: Public domain | W3C validator |