MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.26 Structured version   Visualization version   GIF version

Theorem 19.26 1869
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝜓) → 𝜑)
21alimi 1809 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜑)
3 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
43alimi 1809 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜓)
52, 4jca 511 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓))
6 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
76alanimi 1814 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
85, 7impbii 209 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  19.26-2  1870  19.26-3an  1871  19.43OLD  1882  albiim  1888  2albiim  1889  19.27v  1989  19.28v  1990  19.27  2228  19.28  2229  r19.26m  3116  raleqbidvvOLD  3343  unss  4213  ralunb  4220  ssin  4260  falseral0  4539  intun  5004  intprg  5005  eqrelrel  5821  relop  5875  eqoprab2bw  7520  eqoprab2b  7521  dfer2  8764  axgroth4  10901  grothprim  10903  trclfvcotr  15058  caubnd  15407  bj-gl4  36561  bj-nnfand  36715  bj-elgab  36905  wl-alanbii  37523  ax12eq  38897  ax12el  38898  alan  42621  dford4  42986  elmapintrab  43538  elinintrab  43539  ismnuprim  44263  alimp-no-surprise  48875
  Copyright terms: Public domain W3C validator