Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.26 | Structured version Visualization version GIF version |
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
19.26 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | alimi 1814 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜑) |
3 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | alimi 1814 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜓) |
5 | 2, 4 | jca 512 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
6 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
7 | 6 | alanimi 1819 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
8 | 5, 7 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: 19.26-2 1874 19.26-3an 1875 19.43OLD 1886 albiim 1892 2albiim 1893 19.27v 1993 19.28v 1994 19.27 2220 19.28 2221 r19.26m 3098 raleqbidvv 3338 unss 4118 ralunb 4125 ssin 4164 falseral0 4450 intun 4911 intprg 4912 intprOLD 4914 eqrelrel 5707 relop 5759 eqoprab2bw 7345 eqoprab2b 7346 dfer2 8499 axgroth4 10588 grothprim 10590 trclfvcotr 14720 caubnd 15070 bj-gl4 34777 bj-nnfand 34931 bj-elgab 35127 wl-alanbii 35724 ax12eq 36955 ax12el 36956 dford4 40851 elmapintrab 41184 elinintrab 41185 ismnuprim 41912 alimp-no-surprise 46485 |
Copyright terms: Public domain | W3C validator |