![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.26 | Structured version Visualization version GIF version |
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
19.26 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | alimi 1808 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜑) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | alimi 1808 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → ∀𝑥𝜓) |
5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
6 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
7 | 6 | alanimi 1813 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
8 | 5, 7 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 19.26-2 1869 19.26-3an 1870 19.43OLD 1881 albiim 1887 2albiim 1888 19.27v 1987 19.28v 1988 19.27 2225 19.28 2226 r19.26m 3108 raleqbidvvOLD 3333 unss 4200 ralunb 4207 ssin 4247 falseral0 4522 intun 4985 intprg 4986 eqrelrel 5810 relop 5864 eqoprab2bw 7503 eqoprab2b 7504 dfer2 8745 axgroth4 10870 grothprim 10872 trclfvcotr 15045 caubnd 15394 bj-gl4 36578 bj-nnfand 36732 bj-elgab 36922 wl-alanbii 37550 ax12eq 38923 ax12el 38924 alan 42653 dford4 43018 elmapintrab 43566 elinintrab 43567 ismnuprim 44290 alimp-no-surprise 49012 |
Copyright terms: Public domain | W3C validator |