MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.26 Structured version   Visualization version   GIF version

Theorem 19.26 1873
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 483 . . . 4 ((𝜑𝜓) → 𝜑)
21alimi 1814 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜑)
3 simpr 485 . . . 4 ((𝜑𝜓) → 𝜓)
43alimi 1814 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜓)
52, 4jca 512 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓))
6 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
76alanimi 1819 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
85, 7impbii 208 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  19.26-2  1874  19.26-3an  1875  19.43OLD  1886  albiim  1892  2albiim  1893  19.27v  1993  19.28v  1994  19.27  2220  19.28  2221  r19.26m  3098  raleqbidvv  3338  unss  4118  ralunb  4125  ssin  4164  falseral0  4450  intun  4911  intprg  4912  intprOLD  4914  eqrelrel  5707  relop  5759  eqoprab2bw  7345  eqoprab2b  7346  dfer2  8499  axgroth4  10588  grothprim  10590  trclfvcotr  14720  caubnd  15070  bj-gl4  34777  bj-nnfand  34931  bj-elgab  35127  wl-alanbii  35724  ax12eq  36955  ax12el  36956  dford4  40851  elmapintrab  41184  elinintrab  41185  ismnuprim  41912  alimp-no-surprise  46485
  Copyright terms: Public domain W3C validator