MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.26 Structured version   Visualization version   GIF version

Theorem 19.26 1874
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝜓) → 𝜑)
21alimi 1815 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜑)
3 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
43alimi 1815 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜓)
52, 4jca 511 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓))
6 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
76alanimi 1820 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
85, 7impbii 208 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  19.26-2  1875  19.26-3an  1876  19.43OLD  1887  albiim  1893  2albiim  1894  19.27v  1994  19.28v  1995  19.27  2223  19.28  2224  r19.26m  3097  raleqbidvv  3329  unss  4114  ralunb  4121  ssin  4161  falseral0  4447  intun  4908  intprg  4909  intprOLD  4911  eqrelrel  5696  relop  5748  eqoprab2bw  7323  eqoprab2b  7324  dfer2  8457  axgroth4  10519  grothprim  10521  trclfvcotr  14648  caubnd  14998  bj-gl4  34704  bj-nnfand  34858  bj-elgab  35054  wl-alanbii  35651  ax12eq  36882  ax12el  36883  dford4  40767  elmapintrab  41073  elinintrab  41074  ismnuprim  41801  alimp-no-surprise  46371
  Copyright terms: Public domain W3C validator