Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imbi12 Structured version   Visualization version   GIF version

Theorem bj-imbi12 34764
Description: Uncurried (imported) form of imbi12 347. (Contributed by BJ, 6-May-2019.)
Assertion
Ref Expression
bj-imbi12 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) ↔ (𝜓𝜃)))

Proof of Theorem bj-imbi12
StepHypRef Expression
1 imbi12 347 . 2 ((𝜑𝜓) → ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃))))
21imp 407 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) ↔ (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator