| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ififc | Structured version Visualization version GIF version | ||
| Description: A biconditional connecting the conditional operator for propositions and the conditional operator for classes. Note that there is no sethood hypothesis on 𝑋: it is implied by either side. (Contributed by BJ, 24-Sep-2019.) Generalize statement from setvar 𝑥 to class 𝑋. (Revised by BJ, 26-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-ififc | ⊢ (𝑋 ∈ if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-df-ifc 36559 | . . 3 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} | |
| 2 | 1 | eleq2i 2832 | . 2 ⊢ (𝑋 ∈ if(𝜑, 𝐴, 𝐵) ↔ 𝑋 ∈ {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)}) |
| 3 | df-ifp 1064 | . . . 4 ⊢ (if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵) ↔ ((𝜑 ∧ 𝑋 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑋 ∈ 𝐵))) | |
| 4 | elex 3500 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ V) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ V) |
| 6 | elex 3500 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((¬ 𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ V) |
| 8 | 5, 7 | jaoi 858 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑋 ∈ 𝐵)) → 𝑋 ∈ V) |
| 9 | 3, 8 | sylbi 217 | . . 3 ⊢ (if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵) → 𝑋 ∈ V) |
| 10 | eleq1 2828 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
| 11 | eleq1 2828 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
| 12 | 10, 11 | ifpbi23d 1080 | . . 3 ⊢ (𝑥 = 𝑋 → (if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵) ↔ if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵))) |
| 13 | 9, 12 | elab3 3685 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} ↔ if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵)) |
| 14 | 2, 13 | bitri 275 | 1 ⊢ (𝑋 ∈ if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 = wceq 1540 ∈ wcel 2108 {cab 2713 Vcvv 3479 ifcif 4524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-if 4525 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |