![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ififc | Structured version Visualization version GIF version |
Description: A biconditional connecting the conditional operator for propositions and the conditional operator for classes. Note that there is no sethood hypothesis on 𝑋: it is implied by either side. (Contributed by BJ, 24-Sep-2019.) Generalize statement from setvar 𝑥 to class 𝑋. (Revised by BJ, 26-Dec-2023.) |
Ref | Expression |
---|---|
bj-ififc | ⊢ (𝑋 ∈ if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-df-ifc 35992 | . . 3 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} | |
2 | 1 | eleq2i 2820 | . 2 ⊢ (𝑋 ∈ if(𝜑, 𝐴, 𝐵) ↔ 𝑋 ∈ {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)}) |
3 | df-ifp 1062 | . . . 4 ⊢ (if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵) ↔ ((𝜑 ∧ 𝑋 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑋 ∈ 𝐵))) | |
4 | elex 3488 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ V) | |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ V) |
6 | elex 3488 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((¬ 𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ V) |
8 | 5, 7 | jaoi 856 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑋 ∈ 𝐵)) → 𝑋 ∈ V) |
9 | 3, 8 | sylbi 216 | . . 3 ⊢ (if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵) → 𝑋 ∈ V) |
10 | eleq1 2816 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
11 | eleq1 2816 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
12 | 10, 11 | ifpbi23d 1078 | . . 3 ⊢ (𝑥 = 𝑋 → (if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵) ↔ if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵))) |
13 | 9, 12 | elab3 3673 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} ↔ if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵)) |
14 | 2, 13 | bitri 275 | 1 ⊢ (𝑋 ∈ if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 846 if-wif 1061 = wceq 1534 ∈ wcel 2099 {cab 2704 Vcvv 3469 ifcif 4524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ifp 1062 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-if 4525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |