![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-biorfi | Structured version Visualization version GIF version |
Description: This should be labeled "biorfi" while the current biorfi 922 should be labeled "biorfri". The dual of biorf 920 is not biantr 793 but iba 520 (and ibar 521). So there should also be a "biorfr". (Note that these four statements can actually be strengthened to biconditionals.) (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-biorfi.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
bj-biorfi | ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-biorfi.1 | . 2 ⊢ ¬ 𝜑 | |
2 | biorf 920 | . 2 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∨ wo 833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-or 834 |
This theorem is referenced by: bj-falor 33373 |
Copyright terms: Public domain | W3C validator |