Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-biorfi Structured version   Visualization version   GIF version

Theorem bj-biorfi 33372
Description: This should be labeled "biorfi" while the current biorfi 922 should be labeled "biorfri". The dual of biorf 920 is not biantr 793 but iba 520 (and ibar 521). So there should also be a "biorfr". (Note that these four statements can actually be strengthened to biconditionals.) (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-biorfi.1 ¬ 𝜑
Assertion
Ref Expression
bj-biorfi (𝜓 ↔ (𝜑𝜓))

Proof of Theorem bj-biorfi
StepHypRef Expression
1 bj-biorfi.1 . 2 ¬ 𝜑
2 biorf 920 . 2 𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wo 833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-or 834
This theorem is referenced by:  bj-falor  33373
  Copyright terms: Public domain W3C validator