Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-biorfi Structured version   Visualization version   GIF version

Theorem bj-biorfi 34692
Description: This should be labeled "biorfi" while the current biorfi 935 should be labeled "biorfri". The dual of biorf 933 is not biantr 802 but iba 527 (and ibar 528). So there should also be a "biorfr". (Note that these four statements can actually be strengthened to biconditionals.) (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-biorfi.1 ¬ 𝜑
Assertion
Ref Expression
bj-biorfi (𝜓 ↔ (𝜑𝜓))

Proof of Theorem bj-biorfi
StepHypRef Expression
1 bj-biorfi.1 . 2 ¬ 𝜑
2 biorf 933 . 2 𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  bj-falor  34693
  Copyright terms: Public domain W3C validator