Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ntrufal Structured version   Visualization version   GIF version

Theorem bj-ntrufal 34729
Description: The negation of a theorem is equivalent to false. This can shorten dfnul2 4264. (Contributed by BJ, 5-Oct-2024.)
Hypothesis
Ref Expression
bj-ntrufal.1 𝜑
Assertion
Ref Expression
bj-ntrufal 𝜑 ↔ ⊥)

Proof of Theorem bj-ntrufal
StepHypRef Expression
1 bj-ntrufal.1 . . 3 𝜑
21notnoti 143 . 2 ¬ ¬ 𝜑
32bifal 1557 1 𝜑 ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wfal 1553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1544  df-fal 1554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator