![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfnul2 | Structured version Visualization version GIF version |
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) Remove dependency on ax-10 2137, ax-11 2154, and ax-12 2171. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
dfnul2 | ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnul4 4324 | . 2 ⊢ ∅ = {𝑥 ∣ ⊥} | |
2 | equid 2015 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
3 | 2 | notnoti 143 | . . . 4 ⊢ ¬ ¬ 𝑥 = 𝑥 |
4 | 3 | bifal 1557 | . . 3 ⊢ (¬ 𝑥 = 𝑥 ↔ ⊥) |
5 | 4 | abbii 2802 | . 2 ⊢ {𝑥 ∣ ¬ 𝑥 = 𝑥} = {𝑥 ∣ ⊥} |
6 | 1, 5 | eqtr4i 2763 | 1 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ⊥wfal 1553 {cab 2709 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-dif 3951 df-nul 4323 |
This theorem is referenced by: dfnul3OLD 4328 dfnul4OLD 4329 ab0orv 4378 iotanul 6521 avril1 29971 |
Copyright terms: Public domain | W3C validator |