Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfnul2 | Structured version Visualization version GIF version |
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) Remove dependency on ax-10 2141, ax-11 2158, and ax-12 2175. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
dfnul2 | ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnul4 4239 | . 2 ⊢ ∅ = {𝑥 ∣ ⊥} | |
2 | equid 2020 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
3 | 2 | notnoti 145 | . . . 4 ⊢ ¬ ¬ 𝑥 = 𝑥 |
4 | 3 | bifal 1559 | . . 3 ⊢ (¬ 𝑥 = 𝑥 ↔ ⊥) |
5 | 4 | abbii 2808 | . 2 ⊢ {𝑥 ∣ ¬ 𝑥 = 𝑥} = {𝑥 ∣ ⊥} |
6 | 1, 5 | eqtr4i 2768 | 1 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1543 ⊥wfal 1555 {cab 2714 ∅c0 4237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-dif 3869 df-nul 4238 |
This theorem is referenced by: dfnul3OLD 4243 dfnul4OLD 4244 ab0orv 4293 iotanul 6358 avril1 28546 |
Copyright terms: Public domain | W3C validator |