Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mt2bi Structured version   Visualization version   GIF version

Theorem bj-mt2bi 34728
Description: Version of mt2 199 where the major premise is a biconditional. Another proof is also possible via con2bii 357 and mpbi 229. The current mt2bi 363 should be relabeled, maybe to imfal. (Contributed by BJ, 5-Oct-2024.)
Hypotheses
Ref Expression
bj-mt2bi.min 𝜑
bj-mt2bi.maj (𝜓 ↔ ¬ 𝜑)
Assertion
Ref Expression
bj-mt2bi ¬ 𝜓

Proof of Theorem bj-mt2bi
StepHypRef Expression
1 bj-mt2bi.min . 2 𝜑
2 bj-mt2bi.maj . . 3 (𝜓 ↔ ¬ 𝜑)
32biimpi 215 . 2 (𝜓 → ¬ 𝜑)
41, 3mt2 199 1 ¬ 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  bj-fal  34730
  Copyright terms: Public domain W3C validator