Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1047 Structured version   Visualization version   GIF version

Theorem bnj1047 32853
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1047.1 (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))
bnj1047.2 (𝜂′[𝑗 / 𝑖]𝜂)
Assertion
Ref Expression
bnj1047 (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖𝜂′))

Proof of Theorem bnj1047
StepHypRef Expression
1 bnj1047.1 . 2 (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))
2 bnj1047.2 . . . 4 (𝜂′[𝑗 / 𝑖]𝜂)
32imbi2i 335 . . 3 ((𝑗 E 𝑖𝜂′) ↔ (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))
43ralbii 3090 . 2 (∀𝑗𝑛 (𝑗 E 𝑖𝜂′) ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))
51, 4bitr4i 277 1 (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖𝜂′))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wral 3063  [wsbc 3711   class class class wbr 5070   E cep 5485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ral 3068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator