Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1040 Structured version   Visualization version   GIF version

Theorem bnj1040 32523
Description: Technical lemma for bnj69 32561. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1040.1 (𝜑′[𝑗 / 𝑖]𝜑)
bnj1040.2 (𝜓′[𝑗 / 𝑖]𝜓)
bnj1040.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1040.4 (𝜒′[𝑗 / 𝑖]𝜒)
Assertion
Ref Expression
bnj1040 (𝜒′ ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑′𝜓′))
Distinct variable groups:   𝐷,𝑖   𝑓,𝑖   𝑖,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛)   𝜓(𝑓,𝑖,𝑗,𝑛)   𝜒(𝑓,𝑖,𝑗,𝑛)   𝐷(𝑓,𝑗,𝑛)   𝜑′(𝑓,𝑖,𝑗,𝑛)   𝜓′(𝑓,𝑖,𝑗,𝑛)   𝜒′(𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1040
StepHypRef Expression
1 bnj1040.4 . 2 (𝜒′[𝑗 / 𝑖]𝜒)
2 bnj1040.3 . . 3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
32sbcbii 3738 . 2 ([𝑗 / 𝑖]𝜒[𝑗 / 𝑖](𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
4 df-bnj17 32236 . . 3 (([𝑗 / 𝑖]𝑛𝐷[𝑗 / 𝑖]𝑓 Fn 𝑛[𝑗 / 𝑖]𝜑[𝑗 / 𝑖]𝜓) ↔ (([𝑗 / 𝑖]𝑛𝐷[𝑗 / 𝑖]𝑓 Fn 𝑛[𝑗 / 𝑖]𝜑) ∧ [𝑗 / 𝑖]𝜓))
5 vex 3402 . . . . . 6 𝑗 ∈ V
65bnj525 32288 . . . . 5 ([𝑗 / 𝑖]𝑛𝐷𝑛𝐷)
76bicomi 227 . . . 4 (𝑛𝐷[𝑗 / 𝑖]𝑛𝐷)
85bnj525 32288 . . . . 5 ([𝑗 / 𝑖]𝑓 Fn 𝑛𝑓 Fn 𝑛)
98bicomi 227 . . . 4 (𝑓 Fn 𝑛[𝑗 / 𝑖]𝑓 Fn 𝑛)
10 bnj1040.1 . . . 4 (𝜑′[𝑗 / 𝑖]𝜑)
11 bnj1040.2 . . . 4 (𝜓′[𝑗 / 𝑖]𝜓)
127, 9, 10, 11bnj887 32315 . . 3 ((𝑛𝐷𝑓 Fn 𝑛𝜑′𝜓′) ↔ ([𝑗 / 𝑖]𝑛𝐷[𝑗 / 𝑖]𝑓 Fn 𝑛[𝑗 / 𝑖]𝜑[𝑗 / 𝑖]𝜓))
13 df-bnj17 32236 . . . . 5 ((𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) ↔ ((𝑛𝐷𝑓 Fn 𝑛𝜑) ∧ 𝜓))
1413sbcbii 3738 . . . 4 ([𝑗 / 𝑖](𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) ↔ [𝑗 / 𝑖]((𝑛𝐷𝑓 Fn 𝑛𝜑) ∧ 𝜓))
15 sbcan 3730 . . . 4 ([𝑗 / 𝑖]((𝑛𝐷𝑓 Fn 𝑛𝜑) ∧ 𝜓) ↔ ([𝑗 / 𝑖](𝑛𝐷𝑓 Fn 𝑛𝜑) ∧ [𝑗 / 𝑖]𝜓))
16 sbc3an 3747 . . . . 5 ([𝑗 / 𝑖](𝑛𝐷𝑓 Fn 𝑛𝜑) ↔ ([𝑗 / 𝑖]𝑛𝐷[𝑗 / 𝑖]𝑓 Fn 𝑛[𝑗 / 𝑖]𝜑))
1716anbi1i 627 . . . 4 (([𝑗 / 𝑖](𝑛𝐷𝑓 Fn 𝑛𝜑) ∧ [𝑗 / 𝑖]𝜓) ↔ (([𝑗 / 𝑖]𝑛𝐷[𝑗 / 𝑖]𝑓 Fn 𝑛[𝑗 / 𝑖]𝜑) ∧ [𝑗 / 𝑖]𝜓))
1814, 15, 173bitri 300 . . 3 ([𝑗 / 𝑖](𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) ↔ (([𝑗 / 𝑖]𝑛𝐷[𝑗 / 𝑖]𝑓 Fn 𝑛[𝑗 / 𝑖]𝜑) ∧ [𝑗 / 𝑖]𝜓))
194, 12, 183bitr4ri 307 . 2 ([𝑗 / 𝑖](𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑′𝜓′))
201, 3, 193bitri 300 1 (𝜒′ ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑′𝜓′))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1088  wcel 2114  [wsbc 3680   Fn wfn 6334  w-bnj17 32235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-12 2179  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-sbc 3681  df-bnj17 32236
This theorem is referenced by:  bnj1128  32541
  Copyright terms: Public domain W3C validator