Proof of Theorem bnj1049
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-ral 3062 | . 2
⊢
(∀𝑖 ∈
𝑛 𝜂 ↔ ∀𝑖(𝑖 ∈ 𝑛 → 𝜂)) | 
| 2 |  | bnj1049.2 | . . . . . . 7
⊢ (𝜂 ↔ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | 
| 3 | 2 | imbi2i 336 | . . . . . 6
⊢ ((𝑖 ∈ 𝑛 → 𝜂) ↔ (𝑖 ∈ 𝑛 → ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵))) | 
| 4 |  | impexp 450 | . . . . . 6
⊢ (((𝑖 ∈ 𝑛 ∧ (𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁)) → 𝑧 ∈ 𝐵) ↔ (𝑖 ∈ 𝑛 → ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵))) | 
| 5 | 3, 4 | bitr4i 278 | . . . . 5
⊢ ((𝑖 ∈ 𝑛 → 𝜂) ↔ ((𝑖 ∈ 𝑛 ∧ (𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁)) → 𝑧 ∈ 𝐵)) | 
| 6 |  | bnj1049.1 | . . . . . . . . . 10
⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) | 
| 7 | 6 | simplbi 497 | . . . . . . . . 9
⊢ (𝜁 → 𝑖 ∈ 𝑛) | 
| 8 | 7 | bnj708 34770 | . . . . . . . 8
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑖 ∈ 𝑛) | 
| 9 | 8 | pm4.71ri 560 | . . . . . . 7
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) ↔ (𝑖 ∈ 𝑛 ∧ (𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁))) | 
| 10 | 9 | bicomi 224 | . . . . . 6
⊢ ((𝑖 ∈ 𝑛 ∧ (𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁)) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁)) | 
| 11 | 10 | imbi1i 349 | . . . . 5
⊢ (((𝑖 ∈ 𝑛 ∧ (𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁)) → 𝑧 ∈ 𝐵) ↔ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | 
| 12 | 5, 11 | bitri 275 | . . . 4
⊢ ((𝑖 ∈ 𝑛 → 𝜂) ↔ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | 
| 13 | 12, 2 | bitr4i 278 | . . 3
⊢ ((𝑖 ∈ 𝑛 → 𝜂) ↔ 𝜂) | 
| 14 | 13 | albii 1819 | . 2
⊢
(∀𝑖(𝑖 ∈ 𝑛 → 𝜂) ↔ ∀𝑖𝜂) | 
| 15 | 1, 14 | bitri 275 | 1
⊢
(∀𝑖 ∈
𝑛 𝜂 ↔ ∀𝑖𝜂) |