Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cad0OLD | Structured version Visualization version GIF version |
Description: Obsolete version of cad0 1621 as of 21-Sep-2024. (Contributed by Mario Carneiro, 8-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cad0OLD | ⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cad 1610 | . 2 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) | |
2 | idd 24 | . . . 4 ⊢ (¬ 𝜒 → ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓))) | |
3 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜒 → (𝜒 → (𝜑 ∧ 𝜓))) | |
4 | 3 | adantrd 491 | . . . 4 ⊢ (¬ 𝜒 → ((𝜒 ∧ (𝜑 ⊻ 𝜓)) → (𝜑 ∧ 𝜓))) |
5 | 2, 4 | jaod 855 | . . 3 ⊢ (¬ 𝜒 → (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓))) → (𝜑 ∧ 𝜓))) |
6 | orc 863 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) | |
7 | 5, 6 | impbid1 224 | . 2 ⊢ (¬ 𝜒 → (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓))) ↔ (𝜑 ∧ 𝜓))) |
8 | 1, 7 | syl5bb 282 | 1 ⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ⊻ wxo 1503 caddwcad 1609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-cad 1610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |