![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cadifp | Structured version Visualization version GIF version |
Description: The value of the carry is, if the input carry is true, the disjunction, and if the input carry is false, the conjunction, of the other two inputs. (Contributed by BJ, 8-Oct-2019.) |
Ref | Expression |
---|---|
cadifp | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜒, (𝜑 ∨ 𝜓), (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cad1 1614 | . 2 ⊢ (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∨ 𝜓))) | |
2 | cad0 1615 | . 2 ⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | casesifp 1078 | 1 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜒, (𝜑 ∨ 𝜓), (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 846 if-wif 1063 caddwcad 1603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-xor 1509 df-cad 1604 |
This theorem is referenced by: wl-df-3mintru2 37450 |
Copyright terms: Public domain | W3C validator |