Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cadifp | Structured version Visualization version GIF version |
Description: The value of the carry is, if the input carry is true, the disjunction, and if the input carry is false, the conjunction, of the other two inputs. (Contributed by BJ, 8-Oct-2019.) |
Ref | Expression |
---|---|
cadifp | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜒, (𝜑 ∨ 𝜓), (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cad1 1620 | . 2 ⊢ (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∨ 𝜓))) | |
2 | cad0 1621 | . 2 ⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | casesifp 1075 | 1 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜒, (𝜑 ∨ 𝜓), (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 if-wif 1059 caddwcad 1609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-xor 1504 df-cad 1610 |
This theorem is referenced by: wl-df-3mintru2 35582 |
Copyright terms: Public domain | W3C validator |