MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cadifp Structured version   Visualization version   GIF version

Theorem cadifp 1614
Description: The value of the carry is, if the input carry is true, the disjunction, and if the input carry is false, the conjunction, of the other two inputs. (Contributed by BJ, 8-Oct-2019.)
Assertion
Ref Expression
cadifp (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜒, (𝜑𝜓), (𝜑𝜓)))

Proof of Theorem cadifp
StepHypRef Expression
1 cad1 1611 . 2 (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
2 cad0 1612 . 2 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
31, 2casesifp 1076 1 (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜒, (𝜑𝜓), (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 846  if-wif 1061  caddwcad 1600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-xor 1506  df-cad 1601
This theorem is referenced by:  wl-df-3mintru2  36958
  Copyright terms: Public domain W3C validator