MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cadifp Structured version   Visualization version   GIF version

Theorem cadifp 1623
Description: The value of the carry is, if the input carry is true, the disjunction, and if the input carry is false, the conjunction, of the other two inputs. (Contributed by BJ, 8-Oct-2019.)
Assertion
Ref Expression
cadifp (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜒, (𝜑𝜓), (𝜑𝜓)))

Proof of Theorem cadifp
StepHypRef Expression
1 cad1 1620 . 2 (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
2 cad0 1621 . 2 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
31, 2casesifp 1075 1 (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜒, (𝜑𝜓), (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 843  if-wif 1059  caddwcad 1609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-xor 1504  df-cad 1610
This theorem is referenced by:  wl-df-3mintru2  35582
  Copyright terms: Public domain W3C validator