|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cad0 | Structured version Visualization version GIF version | ||
| Description: If one input is false, then the adder carry is true exactly when both of the other two inputs are true. (Contributed by Mario Carneiro, 8-Sep-2016.) (Proof shortened by Wolf Lammen, 21-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| cad0 | ⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-cad 1607 | . . 3 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) | |
| 2 | idd 24 | . . . 4 ⊢ (¬ 𝜒 → ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓))) | |
| 3 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜒 → (𝜒 → (𝜑 ∧ 𝜓))) | |
| 4 | 3 | adantrd 491 | . . . 4 ⊢ (¬ 𝜒 → ((𝜒 ∧ (𝜑 ⊻ 𝜓)) → (𝜑 ∧ 𝜓))) | 
| 5 | 2, 4 | jaod 860 | . . 3 ⊢ (¬ 𝜒 → (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓))) → (𝜑 ∧ 𝜓))) | 
| 6 | 1, 5 | biimtrid 242 | . 2 ⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) → (𝜑 ∧ 𝜓))) | 
| 7 | cad11 1616 | . 2 ⊢ ((𝜑 ∧ 𝜓) → cadd(𝜑, 𝜓, 𝜒)) | |
| 8 | 6, 7 | impbid1 225 | 1 ⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ⊻ wxo 1511 caddwcad 1606 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-cad 1607 | 
| This theorem is referenced by: cadifp 1619 sadadd2lem2 16487 sadcaddlem 16494 saddisjlem 16501 | 
| Copyright terms: Public domain | W3C validator |