MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cad0 Structured version   Visualization version   GIF version

Theorem cad0 1620
Description: If one input is false, then the adder carry is true exactly when both of the other two inputs are true. (Contributed by Mario Carneiro, 8-Sep-2016.) (Proof shortened by Wolf Lammen, 21-Sep-2024.)
Assertion
Ref Expression
cad0 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))

Proof of Theorem cad0
StepHypRef Expression
1 df-cad 1609 . . 3 (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓))))
2 idd 24 . . . 4 𝜒 → ((𝜑𝜓) → (𝜑𝜓)))
3 pm2.21 123 . . . . 5 𝜒 → (𝜒 → (𝜑𝜓)))
43adantrd 492 . . . 4 𝜒 → ((𝜒 ∧ (𝜑𝜓)) → (𝜑𝜓)))
52, 4jaod 856 . . 3 𝜒 → (((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓))) → (𝜑𝜓)))
61, 5syl5bi 241 . 2 𝜒 → (cadd(𝜑, 𝜓, 𝜒) → (𝜑𝜓)))
7 cad11 1618 . 2 ((𝜑𝜓) → cadd(𝜑, 𝜓, 𝜒))
86, 7impbid1 224 1 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  wxo 1506  caddwcad 1608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-cad 1609
This theorem is referenced by:  cadifp  1622  sadadd2lem2  16157  sadcaddlem  16164  saddisjlem  16171
  Copyright terms: Public domain W3C validator