Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cad0 | Structured version Visualization version GIF version |
Description: If one input is false, then the adder carry is true exactly when both of the other two inputs are true. (Contributed by Mario Carneiro, 8-Sep-2016.) (Proof shortened by Wolf Lammen, 21-Sep-2024.) |
Ref | Expression |
---|---|
cad0 | ⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cad 1610 | . . 3 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) | |
2 | idd 24 | . . . 4 ⊢ (¬ 𝜒 → ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓))) | |
3 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜒 → (𝜒 → (𝜑 ∧ 𝜓))) | |
4 | 3 | adantrd 491 | . . . 4 ⊢ (¬ 𝜒 → ((𝜒 ∧ (𝜑 ⊻ 𝜓)) → (𝜑 ∧ 𝜓))) |
5 | 2, 4 | jaod 855 | . . 3 ⊢ (¬ 𝜒 → (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓))) → (𝜑 ∧ 𝜓))) |
6 | 1, 5 | syl5bi 241 | . 2 ⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) → (𝜑 ∧ 𝜓))) |
7 | cad11 1619 | . 2 ⊢ ((𝜑 ∧ 𝜓) → cadd(𝜑, 𝜓, 𝜒)) | |
8 | 6, 7 | impbid1 224 | 1 ⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ⊻ wxo 1503 caddwcad 1609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-cad 1610 |
This theorem is referenced by: cadifp 1623 sadadd2lem2 16085 sadcaddlem 16092 saddisjlem 16099 |
Copyright terms: Public domain | W3C validator |