![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-cad | Structured version Visualization version GIF version |
Description: Definition of the "carry" output of the full adder. It is true when at least two arguments are true, so it is equal to the "majority" function on three variables. See cador 1605 and cadan 1606 for alternate definitions. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
df-cad | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | wcad 1603 | . 2 wff cadd(𝜑, 𝜓, 𝜒) |
5 | 1, 2 | wa 395 | . . 3 wff (𝜑 ∧ 𝜓) |
6 | 1, 2 | wxo 1508 | . . . 4 wff (𝜑 ⊻ 𝜓) |
7 | 3, 6 | wa 395 | . . 3 wff (𝜒 ∧ (𝜑 ⊻ 𝜓)) |
8 | 5, 7 | wo 846 | . 2 wff ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓))) |
9 | 4, 8 | wb 206 | 1 wff (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) |
Colors of variables: wff setvar class |
This definition is referenced by: cador 1605 cadbi123d 1607 cadcoma 1609 cad11 1613 cad0 1615 cad0OLD 1616 |
Copyright terms: Public domain | W3C validator |