MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cad Structured version   Visualization version   GIF version

Definition df-cad 1607
Description: Definition of the "carry" output of the full adder. It is true when at least two arguments are true, so it is equal to the "majority" function on three variables. See cador 1608 and cadan 1609 for alternate definitions. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
df-cad (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓))))

Detailed syntax breakdown of Definition df-cad
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
41, 2, 3wcad 1606 . 2 wff cadd(𝜑, 𝜓, 𝜒)
51, 2wa 395 . . 3 wff (𝜑𝜓)
61, 2wxo 1511 . . . 4 wff (𝜑𝜓)
73, 6wa 395 . . 3 wff (𝜒 ∧ (𝜑𝜓))
85, 7wo 848 . 2 wff ((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓)))
94, 8wb 206 1 wff (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓))))
Colors of variables: wff setvar class
This definition is referenced by:  cador  1608  cadbi123d  1610  cadcoma  1612  cad11  1616  cad0  1618
  Copyright terms: Public domain W3C validator