| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-cad | Structured version Visualization version GIF version | ||
| Description: Definition of the "carry" output of the full adder. It is true when at least two arguments are true, so it is equal to the "majority" function on three variables. See cador 1608 and cadan 1609 for alternate definitions. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| df-cad | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 1, 2, 3 | wcad 1606 | . 2 wff cadd(𝜑, 𝜓, 𝜒) |
| 5 | 1, 2 | wa 395 | . . 3 wff (𝜑 ∧ 𝜓) |
| 6 | 1, 2 | wxo 1511 | . . . 4 wff (𝜑 ⊻ 𝜓) |
| 7 | 3, 6 | wa 395 | . . 3 wff (𝜒 ∧ (𝜑 ⊻ 𝜓)) |
| 8 | 5, 7 | wo 848 | . 2 wff ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓))) |
| 9 | 4, 8 | wb 206 | 1 wff (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cador 1608 cadbi123d 1610 cadcoma 1612 cad11 1616 cad0 1618 |
| Copyright terms: Public domain | W3C validator |