Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-cad | Structured version Visualization version GIF version |
Description: Definition of the "carry" output of the full adder. It is true when at least two arguments are true, so it is equal to the "majority" function on three variables. See cador 1610 and cadan 1611 for alternate definitions. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
df-cad | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | wcad 1608 | . 2 wff cadd(𝜑, 𝜓, 𝜒) |
5 | 1, 2 | wa 396 | . . 3 wff (𝜑 ∧ 𝜓) |
6 | 1, 2 | wxo 1506 | . . . 4 wff (𝜑 ⊻ 𝜓) |
7 | 3, 6 | wa 396 | . . 3 wff (𝜒 ∧ (𝜑 ⊻ 𝜓)) |
8 | 5, 7 | wo 844 | . 2 wff ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓))) |
9 | 4, 8 | wb 205 | 1 wff (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) |
Colors of variables: wff setvar class |
This definition is referenced by: cador 1610 cadbi123d 1612 cadcoma 1614 cad11 1618 cad0 1620 cad0OLD 1621 |
Copyright terms: Public domain | W3C validator |