Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-cad | Structured version Visualization version GIF version |
Description: Definition of the "carry" output of the full adder. It is true when at least two arguments are true, so it is equal to the "majority" function on three variables. See cador 1611 and cadan 1612 for alternate definitions. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
df-cad | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | wcad 1609 | . 2 wff cadd(𝜑, 𝜓, 𝜒) |
5 | 1, 2 | wa 395 | . . 3 wff (𝜑 ∧ 𝜓) |
6 | 1, 2 | wxo 1503 | . . . 4 wff (𝜑 ⊻ 𝜓) |
7 | 3, 6 | wa 395 | . . 3 wff (𝜒 ∧ (𝜑 ⊻ 𝜓)) |
8 | 5, 7 | wo 843 | . 2 wff ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓))) |
9 | 4, 8 | wb 205 | 1 wff (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) |
Colors of variables: wff setvar class |
This definition is referenced by: cador 1611 cadbi123d 1613 cadcoma 1615 cad11 1619 cad0 1621 cad0OLD 1622 |
Copyright terms: Public domain | W3C validator |