Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > calemes | Structured version Visualization version GIF version |
Description: "Calemes", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and no 𝜓 is 𝜒, therefore no 𝜒 is 𝜑. In Aristotelian notation, AEE-4: PaM and MeS therefore SeP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
calemes.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
calemes.min | ⊢ ∀𝑥(𝜓 → ¬ 𝜒) |
Ref | Expression |
---|---|
calemes | ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | calemes.maj | . 2 ⊢ ∀𝑥(𝜑 → 𝜓) | |
2 | calemes.min | . . 3 ⊢ ∀𝑥(𝜓 → ¬ 𝜒) | |
3 | con2 135 | . . . 4 ⊢ ((𝜓 → ¬ 𝜒) → (𝜒 → ¬ 𝜓)) | |
4 | 3 | alimi 1814 | . . 3 ⊢ (∀𝑥(𝜓 → ¬ 𝜒) → ∀𝑥(𝜒 → ¬ 𝜓)) |
5 | 2, 4 | ax-mp 5 | . 2 ⊢ ∀𝑥(𝜒 → ¬ 𝜓) |
6 | 1, 5 | camestres 2674 | 1 ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: calemos 2691 |
Copyright terms: Public domain | W3C validator |