| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > calemes | Structured version Visualization version GIF version | ||
| Description: "Calemes", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and no 𝜓 is 𝜒, therefore no 𝜒 is 𝜑. In Aristotelian notation, AEE-4: PaM and MeS therefore SeP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
| Ref | Expression |
|---|---|
| calemes.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
| calemes.min | ⊢ ∀𝑥(𝜓 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| calemes | ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | calemes.maj | . 2 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 2 | calemes.min | . . 3 ⊢ ∀𝑥(𝜓 → ¬ 𝜒) | |
| 3 | con2 135 | . . . 4 ⊢ ((𝜓 → ¬ 𝜒) → (𝜒 → ¬ 𝜓)) | |
| 4 | 3 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜓 → ¬ 𝜒) → ∀𝑥(𝜒 → ¬ 𝜓)) |
| 5 | 2, 4 | ax-mp 5 | . 2 ⊢ ∀𝑥(𝜒 → ¬ 𝜓) |
| 6 | 1, 5 | camestres 2673 | 1 ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: calemos 2690 |
| Copyright terms: Public domain | W3C validator |