Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dimatis Structured version   Visualization version   GIF version

Theorem dimatis 2776
 Description: "Dimatis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜓 is 𝜒, therefore some 𝜒 is 𝜑. In Aristotelian notation, IAI-4: PiM and MaS therefore SiP. For example, "Some pets are rabbits", "All rabbits have fur", therefore "Some fur bearing animals are pets". Like darii 2753 with positions interchanged. (Contributed by David A. Wheeler, 28-Aug-2016.) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
Hypotheses
Ref Expression
dimatis.maj 𝑥(𝜑𝜓)
dimatis.min 𝑥(𝜓𝜒)
Assertion
Ref Expression
dimatis 𝑥(𝜒𝜑)

Proof of Theorem dimatis
StepHypRef Expression
1 dimatis.min . . 3 𝑥(𝜓𝜒)
2 dimatis.maj . . 3 𝑥(𝜑𝜓)
31, 2darii 2753 . 2 𝑥(𝜑𝜒)
4 exancom 1854 . 2 (∃𝑥(𝜑𝜒) ↔ ∃𝑥(𝜒𝜑))
53, 4mpbi 231 1 𝑥(𝜒𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396  ∀wal 1528  ∃wex 1773 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1774 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator