Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > felapton | Structured version Visualization version GIF version |
Description: "Felapton", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜑 is 𝜒, and some 𝜑 exist, therefore some 𝜒 is not 𝜓. Instance of darapti 2685. In Aristotelian notation, EAO-3: MeP and MaS therefore SoP. For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016.) |
Ref | Expression |
---|---|
felapton.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
felapton.min | ⊢ ∀𝑥(𝜑 → 𝜒) |
felapton.e | ⊢ ∃𝑥𝜑 |
Ref | Expression |
---|---|
felapton | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | felapton.maj | . 2 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
2 | felapton.min | . 2 ⊢ ∀𝑥(𝜑 → 𝜒) | |
3 | felapton.e | . 2 ⊢ ∃𝑥𝜑 | |
4 | 1, 2, 3 | darapti 2685 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: fesapo 2692 |
Copyright terms: Public domain | W3C validator |