|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > felapton | Structured version Visualization version GIF version | ||
| Description: "Felapton", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜑 is 𝜒, and some 𝜑 exist, therefore some 𝜒 is not 𝜓. Instance of darapti 2684. In Aristotelian notation, EAO-3: MeP and MaS therefore SoP. For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| felapton.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | 
| felapton.min | ⊢ ∀𝑥(𝜑 → 𝜒) | 
| felapton.e | ⊢ ∃𝑥𝜑 | 
| Ref | Expression | 
|---|---|
| felapton | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | felapton.maj | . 2 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
| 2 | felapton.min | . 2 ⊢ ∀𝑥(𝜑 → 𝜒) | |
| 3 | felapton.e | . 2 ⊢ ∃𝑥𝜑 | |
| 4 | 1, 2, 3 | darapti 2684 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 | 
| This theorem is referenced by: fesapo 2691 | 
| Copyright terms: Public domain | W3C validator |