Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  felapton Structured version   Visualization version   GIF version

Theorem felapton 2774
 Description: "Felapton", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜑 is 𝜒, and some 𝜑 exist, therefore some 𝜒 is not 𝜓. Instance of darapti 2772. In Aristotelian notation, EAO-3: MeP and MaS therefore SoP. For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
felapton.maj 𝑥(𝜑 → ¬ 𝜓)
felapton.min 𝑥(𝜑𝜒)
felapton.e 𝑥𝜑
Assertion
Ref Expression
felapton 𝑥(𝜒 ∧ ¬ 𝜓)

Proof of Theorem felapton
StepHypRef Expression
1 felapton.maj . 2 𝑥(𝜑 → ¬ 𝜓)
2 felapton.min . 2 𝑥(𝜑𝜒)
3 felapton.e . 2 𝑥𝜑
41, 2, 3darapti 2772 1 𝑥(𝜒 ∧ ¬ 𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399  ∀wal 1536  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782 This theorem is referenced by:  fesapo  2779
 Copyright terms: Public domain W3C validator