Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > celarent | Structured version Visualization version GIF version |
Description: "Celarent", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and all 𝜒 is 𝜑, therefore no 𝜒 is 𝜓. Instance of barbara 2664. In Aristotelian notation, EAE-1: MeP and SaM therefore SeP. For example, given the "No reptiles have fur" and "All snakes are reptiles", therefore "No snakes have fur". Example from https://en.wikipedia.org/wiki/Syllogism 2664. (Contributed by David A. Wheeler, 24-Aug-2016.) |
Ref | Expression |
---|---|
celarent.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
celarent.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
Ref | Expression |
---|---|
celarent | ⊢ ∀𝑥(𝜒 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | celarent.maj | . 2 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
2 | celarent.min | . 2 ⊢ ∀𝑥(𝜒 → 𝜑) | |
3 | 1, 2 | barbara 2664 | 1 ⊢ ∀𝑥(𝜒 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: cesare 2673 camestres 2674 |
Copyright terms: Public domain | W3C validator |