MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  darii Structured version   Visualization version   GIF version

Theorem darii 2666
Description: "Darii", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜒 is 𝜑, therefore some 𝜒 is 𝜓. In Aristotelian notation, AII-1: MaP and SiM therefore SiP. For example, given "All rabbits have fur" and "Some pets are rabbits", therefore "Some pets have fur". Example from https://en.wikipedia.org/wiki/Syllogism. See dariiALT 2667 for a shorter proof requiring more axioms. (Contributed by David A. Wheeler, 24-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
Hypotheses
Ref Expression
darii.maj 𝑥(𝜑𝜓)
darii.min 𝑥(𝜒𝜑)
Assertion
Ref Expression
darii 𝑥(𝜒𝜓)

Proof of Theorem darii
StepHypRef Expression
1 darii.maj . . 3 𝑥(𝜑𝜓)
2 id 22 . . . . 5 ((𝜑𝜓) → (𝜑𝜓))
32anim2d 611 . . . 4 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
43alimi 1815 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥((𝜒𝜑) → (𝜒𝜓)))
51, 4ax-mp 5 . 2 𝑥((𝜒𝜑) → (𝜒𝜓))
6 darii.min . 2 𝑥(𝜒𝜑)
7 exim 1837 . 2 (∀𝑥((𝜒𝜑) → (𝜒𝜓)) → (∃𝑥(𝜒𝜑) → ∃𝑥(𝜒𝜓)))
85, 6, 7mp2 9 1 𝑥(𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  ferio  2668  datisi  2681  dimatis  2689
  Copyright terms: Public domain W3C validator