Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > darii | Structured version Visualization version GIF version |
Description: "Darii", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜒 is 𝜑, therefore some 𝜒 is 𝜓. In Aristotelian notation, AII-1: MaP and SiM therefore SiP. For example, given "All rabbits have fur" and "Some pets are rabbits", therefore "Some pets have fur". Example from https://en.wikipedia.org/wiki/Syllogism. See dariiALT 2667 for a shorter proof requiring more axioms. (Contributed by David A. Wheeler, 24-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
darii.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
darii.min | ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
Ref | Expression |
---|---|
darii | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | darii.maj | . . 3 ⊢ ∀𝑥(𝜑 → 𝜓) | |
2 | id 22 | . . . . 5 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
3 | 2 | anim2d 612 | . . . 4 ⊢ ((𝜑 → 𝜓) → ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓))) |
4 | 3 | alimi 1814 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑥((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓))) |
5 | 1, 4 | ax-mp 5 | . 2 ⊢ ∀𝑥((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
6 | darii.min | . 2 ⊢ ∃𝑥(𝜒 ∧ 𝜑) | |
7 | exim 1836 | . 2 ⊢ (∀𝑥((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) → (∃𝑥(𝜒 ∧ 𝜑) → ∃𝑥(𝜒 ∧ 𝜓))) | |
8 | 5, 6, 7 | mp2 9 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: ferio 2668 datisi 2681 dimatis 2689 |
Copyright terms: Public domain | W3C validator |