Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  con5i Structured version   Visualization version   GIF version

Theorem con5i 42032
Description: Inference form of con5 42031. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
con5i.1 (𝜑 ↔ ¬ 𝜓)
Assertion
Ref Expression
con5i 𝜑𝜓)

Proof of Theorem con5i
StepHypRef Expression
1 con5i.1 . 2 (𝜑 ↔ ¬ 𝜓)
2 con5 42031 . 2 ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))
31, 2ax-mp 5 1 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  vk15.4j  42037  vk15.4jVD  42423
  Copyright terms: Public domain W3C validator