Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vk15.4jVD Structured version   Visualization version   GIF version

Theorem vk15.4jVD 45033
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 15 Excercise 4.f. found in the "Answers to Starred Exercises" on page 442 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. vk15.4j 44648 is vk15.4jVD 45033 without virtual deductions and was automatically derived from vk15.4jVD 45033. Step numbers greater than 25 are additional steps necessary for the sequent calculus proof not contained in the Fitch-style proof. Otherwise, step i of the User's Proof corresponds to step i of the Fitch-style proof.
h1:: ¬ (∃𝑥¬ 𝜑 ∧ ∃𝑥(𝜓 ¬ 𝜒))
h2:: (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏 ))
h3:: ¬ ∀𝑥(𝜏𝜑)
4:: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥¬ 𝜃   )
5:4: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥𝜃   )
6:3: 𝑥(𝜏 ∧ ¬ 𝜑)
7:: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜏 ∧ ¬ 𝜑)   )
8:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝜏   )
9:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ 𝜑   )
10:5: (   ¬ ∃𝑥¬ 𝜃   ▶   𝜃   )
11:10,8: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜃𝜏)   )
12:11: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥(𝜃𝜏)   )
13:12: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ¬ ∃𝑥(𝜃𝜏)   )
14:2,13: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ∀𝑥𝜒   )
140:: (∃𝑥¬ 𝜃 → ∀𝑥𝑥¬ 𝜃 )
141:140: (¬ ∃𝑥¬ 𝜃 → ∀𝑥¬ ∃𝑥 ¬ 𝜃)
142:: (∀𝑥𝜒 → ∀𝑥𝑥𝜒)
143:142: (¬ ∀𝑥𝜒 → ∀𝑥¬ ∀𝑥𝜒 )
144:6,14,141,143: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜒    )
15:1: (¬ ∃𝑥¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
16:9: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥¬ 𝜑   )
161:: (∃𝑥¬ 𝜑 → ∀𝑥𝑥¬ 𝜑 )
162:6,16,141,161: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜑    )
17:162: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ¬ ∃𝑥 ¬ 𝜑   )
18:15,17: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥( 𝜓 ∧ ¬ 𝜒)   )
19:18: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥(𝜓 𝜒)   )
20:144: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜒    )
21:: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜒   )
22:19: (   ¬ ∃𝑥¬ 𝜃   ▶   (𝜓𝜒 )   )
23:21,22: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜓   )
24:23: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶    𝑥¬ 𝜓   )
240:: (∃𝑥¬ 𝜓 → ∀𝑥𝑥¬ 𝜓 )
241:20,24,141,240: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜓    )
25:241: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜓    )
qed:25: (¬ ∃𝑥¬ 𝜃 → ¬ ∀𝑥𝜓)
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vk15.4jVD.1 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
vk15.4jVD.2 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
vk15.4jVD.3 ¬ ∀𝑥(𝜏𝜑)
Assertion
Ref Expression
vk15.4jVD (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)

Proof of Theorem vk15.4jVD
StepHypRef Expression
1 vk15.4jVD.3 . . . . . . 7 ¬ ∀𝑥(𝜏𝜑)
2 exanali 1860 . . . . . . . 8 (∃𝑥(𝜏 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝜏𝜑))
32biimpri 228 . . . . . . 7 (¬ ∀𝑥(𝜏𝜑) → ∃𝑥(𝜏 ∧ ¬ 𝜑))
41, 3e0a 44891 . . . . . 6 𝑥(𝜏 ∧ ¬ 𝜑)
5 vk15.4jVD.2 . . . . . . 7 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
6 idn1 44694 . . . . . . . . . . . 12 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∃𝑥 ¬ 𝜃   )
7 alex 1827 . . . . . . . . . . . . 13 (∀𝑥𝜃 ↔ ¬ ∃𝑥 ¬ 𝜃)
87biimpri 228 . . . . . . . . . . . 12 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥𝜃)
96, 8e1a 44747 . . . . . . . . . . 11 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥𝜃   )
10 sp 2188 . . . . . . . . . . 11 (∀𝑥𝜃𝜃)
119, 10e1a 44747 . . . . . . . . . 10 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝜃   )
12 idn2 44733 . . . . . . . . . . 11 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜏 ∧ ¬ 𝜑)   )
13 simpl 482 . . . . . . . . . . 11 ((𝜏 ∧ ¬ 𝜑) → 𝜏)
1412, 13e2 44751 . . . . . . . . . 10 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝜏   )
15 pm3.2 469 . . . . . . . . . 10 (𝜃 → (𝜏 → (𝜃𝜏)))
1611, 14, 15e12 44843 . . . . . . . . 9 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜃𝜏)   )
17 19.8a 2186 . . . . . . . . 9 ((𝜃𝜏) → ∃𝑥(𝜃𝜏))
1816, 17e2 44751 . . . . . . . 8 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥(𝜃𝜏)   )
19 notnot 142 . . . . . . . 8 (∃𝑥(𝜃𝜏) → ¬ ¬ ∃𝑥(𝜃𝜏))
2018, 19e2 44751 . . . . . . 7 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶    ¬ ¬ ∃𝑥(𝜃𝜏)   )
21 con3 153 . . . . . . 7 ((∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏)) → (¬ ¬ ∃𝑥(𝜃𝜏) → ¬ ∀𝑥𝜒))
225, 20, 21e02 44817 . . . . . 6 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶    ¬ ∀𝑥𝜒   )
23 hbe1 2148 . . . . . . 7 (∃𝑥 ¬ 𝜃 → ∀𝑥𝑥 ¬ 𝜃)
2423hbn 2299 . . . . . 6 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥 ¬ ∃𝑥 ¬ 𝜃)
25 hba1 2297 . . . . . . 7 (∀𝑥𝜒 → ∀𝑥𝑥𝜒)
2625hbn 2299 . . . . . 6 (¬ ∀𝑥𝜒 → ∀𝑥 ¬ ∀𝑥𝜒)
274, 22, 24, 26exinst01 44745 . . . . 5 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∀𝑥𝜒   )
28 exnal 1828 . . . . . 6 (∃𝑥 ¬ 𝜒 ↔ ¬ ∀𝑥𝜒)
2928biimpri 228 . . . . 5 (¬ ∀𝑥𝜒 → ∃𝑥 ¬ 𝜒)
3027, 29e1a 44747 . . . 4 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥 ¬ 𝜒   )
31 idn2 44733 . . . . . 6 (    ¬ ∃𝑥 ¬ 𝜃   ,    ¬ 𝜒   ▶    ¬ 𝜒   )
32 vk15.4jVD.1 . . . . . . . . . 10 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
33 pm3.13 996 . . . . . . . . . 10 (¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
3432, 33e0a 44891 . . . . . . . . 9 (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
35 simpr 484 . . . . . . . . . . . . 13 ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑)
3612, 35e2 44751 . . . . . . . . . . . 12 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶    ¬ 𝜑   )
37 19.8a 2186 . . . . . . . . . . . 12 𝜑 → ∃𝑥 ¬ 𝜑)
3836, 37e2 44751 . . . . . . . . . . 11 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥 ¬ 𝜑   )
39 hbe1 2148 . . . . . . . . . . 11 (∃𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
404, 38, 24, 39exinst01 44745 . . . . . . . . . 10 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥 ¬ 𝜑   )
41 notnot 142 . . . . . . . . . 10 (∃𝑥 ¬ 𝜑 → ¬ ¬ ∃𝑥 ¬ 𝜑)
4240, 41e1a 44747 . . . . . . . . 9 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ¬ ∃𝑥 ¬ 𝜑   )
43 pm2.53 851 . . . . . . . . 9 ((¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ¬ ∃𝑥 ¬ 𝜑 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
4434, 42, 43e01 44811 . . . . . . . 8 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)   )
45 exanali 1860 . . . . . . . . 9 (∃𝑥(𝜓 ∧ ¬ 𝜒) ↔ ¬ ∀𝑥(𝜓𝜒))
4645con5i 44643 . . . . . . . 8 (¬ ∃𝑥(𝜓 ∧ ¬ 𝜒) → ∀𝑥(𝜓𝜒))
4744, 46e1a 44747 . . . . . . 7 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥(𝜓𝜒)   )
48 sp 2188 . . . . . . 7 (∀𝑥(𝜓𝜒) → (𝜓𝜒))
4947, 48e1a 44747 . . . . . 6 (    ¬ ∃𝑥 ¬ 𝜃   ▶   (𝜓𝜒)   )
50 con3 153 . . . . . . 7 ((𝜓𝜒) → (¬ 𝜒 → ¬ 𝜓))
5150com12 32 . . . . . 6 𝜒 → ((𝜓𝜒) → ¬ 𝜓))
5231, 49, 51e21 44849 . . . . 5 (    ¬ ∃𝑥 ¬ 𝜃   ,    ¬ 𝜒   ▶    ¬ 𝜓   )
53 19.8a 2186 . . . . 5 𝜓 → ∃𝑥 ¬ 𝜓)
5452, 53e2 44751 . . . 4 (    ¬ ∃𝑥 ¬ 𝜃   ,    ¬ 𝜒   ▶   𝑥 ¬ 𝜓   )
55 hbe1 2148 . . . 4 (∃𝑥 ¬ 𝜓 → ∀𝑥𝑥 ¬ 𝜓)
5630, 54, 24, 55exinst11 44746 . . 3 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥 ¬ 𝜓   )
57 exnal 1828 . . . 4 (∃𝑥 ¬ 𝜓 ↔ ¬ ∀𝑥𝜓)
5857biimpi 216 . . 3 (∃𝑥 ¬ 𝜓 → ¬ ∀𝑥𝜓)
5956, 58e1a 44747 . 2 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∀𝑥𝜓   )
6059in1 44691 1 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2146  ax-12 2182
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-vd1 44690  df-vd2 44698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator