Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vk15.4jVD Structured version   Visualization version   GIF version

Theorem vk15.4jVD 44910
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 15 Excercise 4.f. found in the "Answers to Starred Exercises" on page 442 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. vk15.4j 44525 is vk15.4jVD 44910 without virtual deductions and was automatically derived from vk15.4jVD 44910. Step numbers greater than 25 are additional steps necessary for the sequent calculus proof not contained in the Fitch-style proof. Otherwise, step i of the User's Proof corresponds to step i of the Fitch-style proof.
h1:: ¬ (∃𝑥¬ 𝜑 ∧ ∃𝑥(𝜓 ¬ 𝜒))
h2:: (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏 ))
h3:: ¬ ∀𝑥(𝜏𝜑)
4:: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥¬ 𝜃   )
5:4: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥𝜃   )
6:3: 𝑥(𝜏 ∧ ¬ 𝜑)
7:: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜏 ∧ ¬ 𝜑)   )
8:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝜏   )
9:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ 𝜑   )
10:5: (   ¬ ∃𝑥¬ 𝜃   ▶   𝜃   )
11:10,8: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜃𝜏)   )
12:11: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥(𝜃𝜏)   )
13:12: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ¬ ∃𝑥(𝜃𝜏)   )
14:2,13: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ∀𝑥𝜒   )
140:: (∃𝑥¬ 𝜃 → ∀𝑥𝑥¬ 𝜃 )
141:140: (¬ ∃𝑥¬ 𝜃 → ∀𝑥¬ ∃𝑥 ¬ 𝜃)
142:: (∀𝑥𝜒 → ∀𝑥𝑥𝜒)
143:142: (¬ ∀𝑥𝜒 → ∀𝑥¬ ∀𝑥𝜒 )
144:6,14,141,143: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜒    )
15:1: (¬ ∃𝑥¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
16:9: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥¬ 𝜑   )
161:: (∃𝑥¬ 𝜑 → ∀𝑥𝑥¬ 𝜑 )
162:6,16,141,161: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜑    )
17:162: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ¬ ∃𝑥 ¬ 𝜑   )
18:15,17: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥( 𝜓 ∧ ¬ 𝜒)   )
19:18: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥(𝜓 𝜒)   )
20:144: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜒    )
21:: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜒   )
22:19: (   ¬ ∃𝑥¬ 𝜃   ▶   (𝜓𝜒 )   )
23:21,22: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜓   )
24:23: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶    𝑥¬ 𝜓   )
240:: (∃𝑥¬ 𝜓 → ∀𝑥𝑥¬ 𝜓 )
241:20,24,141,240: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜓    )
25:241: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜓    )
qed:25: (¬ ∃𝑥¬ 𝜃 → ¬ ∀𝑥𝜓)
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vk15.4jVD.1 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
vk15.4jVD.2 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
vk15.4jVD.3 ¬ ∀𝑥(𝜏𝜑)
Assertion
Ref Expression
vk15.4jVD (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)

Proof of Theorem vk15.4jVD
StepHypRef Expression
1 vk15.4jVD.3 . . . . . . 7 ¬ ∀𝑥(𝜏𝜑)
2 exanali 1859 . . . . . . . 8 (∃𝑥(𝜏 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝜏𝜑))
32biimpri 228 . . . . . . 7 (¬ ∀𝑥(𝜏𝜑) → ∃𝑥(𝜏 ∧ ¬ 𝜑))
41, 3e0a 44768 . . . . . 6 𝑥(𝜏 ∧ ¬ 𝜑)
5 vk15.4jVD.2 . . . . . . 7 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
6 idn1 44571 . . . . . . . . . . . 12 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∃𝑥 ¬ 𝜃   )
7 alex 1826 . . . . . . . . . . . . 13 (∀𝑥𝜃 ↔ ¬ ∃𝑥 ¬ 𝜃)
87biimpri 228 . . . . . . . . . . . 12 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥𝜃)
96, 8e1a 44624 . . . . . . . . . . 11 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥𝜃   )
10 sp 2184 . . . . . . . . . . 11 (∀𝑥𝜃𝜃)
119, 10e1a 44624 . . . . . . . . . 10 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝜃   )
12 idn2 44610 . . . . . . . . . . 11 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜏 ∧ ¬ 𝜑)   )
13 simpl 482 . . . . . . . . . . 11 ((𝜏 ∧ ¬ 𝜑) → 𝜏)
1412, 13e2 44628 . . . . . . . . . 10 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝜏   )
15 pm3.2 469 . . . . . . . . . 10 (𝜃 → (𝜏 → (𝜃𝜏)))
1611, 14, 15e12 44720 . . . . . . . . 9 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜃𝜏)   )
17 19.8a 2182 . . . . . . . . 9 ((𝜃𝜏) → ∃𝑥(𝜃𝜏))
1816, 17e2 44628 . . . . . . . 8 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥(𝜃𝜏)   )
19 notnot 142 . . . . . . . 8 (∃𝑥(𝜃𝜏) → ¬ ¬ ∃𝑥(𝜃𝜏))
2018, 19e2 44628 . . . . . . 7 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶    ¬ ¬ ∃𝑥(𝜃𝜏)   )
21 con3 153 . . . . . . 7 ((∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏)) → (¬ ¬ ∃𝑥(𝜃𝜏) → ¬ ∀𝑥𝜒))
225, 20, 21e02 44694 . . . . . 6 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶    ¬ ∀𝑥𝜒   )
23 hbe1 2144 . . . . . . 7 (∃𝑥 ¬ 𝜃 → ∀𝑥𝑥 ¬ 𝜃)
2423hbn 2295 . . . . . 6 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥 ¬ ∃𝑥 ¬ 𝜃)
25 hba1 2293 . . . . . . 7 (∀𝑥𝜒 → ∀𝑥𝑥𝜒)
2625hbn 2295 . . . . . 6 (¬ ∀𝑥𝜒 → ∀𝑥 ¬ ∀𝑥𝜒)
274, 22, 24, 26exinst01 44622 . . . . 5 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∀𝑥𝜒   )
28 exnal 1827 . . . . . 6 (∃𝑥 ¬ 𝜒 ↔ ¬ ∀𝑥𝜒)
2928biimpri 228 . . . . 5 (¬ ∀𝑥𝜒 → ∃𝑥 ¬ 𝜒)
3027, 29e1a 44624 . . . 4 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥 ¬ 𝜒   )
31 idn2 44610 . . . . . 6 (    ¬ ∃𝑥 ¬ 𝜃   ,    ¬ 𝜒   ▶    ¬ 𝜒   )
32 vk15.4jVD.1 . . . . . . . . . 10 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
33 pm3.13 996 . . . . . . . . . 10 (¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
3432, 33e0a 44768 . . . . . . . . 9 (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
35 simpr 484 . . . . . . . . . . . . 13 ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑)
3612, 35e2 44628 . . . . . . . . . . . 12 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶    ¬ 𝜑   )
37 19.8a 2182 . . . . . . . . . . . 12 𝜑 → ∃𝑥 ¬ 𝜑)
3836, 37e2 44628 . . . . . . . . . . 11 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥 ¬ 𝜑   )
39 hbe1 2144 . . . . . . . . . . 11 (∃𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
404, 38, 24, 39exinst01 44622 . . . . . . . . . 10 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥 ¬ 𝜑   )
41 notnot 142 . . . . . . . . . 10 (∃𝑥 ¬ 𝜑 → ¬ ¬ ∃𝑥 ¬ 𝜑)
4240, 41e1a 44624 . . . . . . . . 9 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ¬ ∃𝑥 ¬ 𝜑   )
43 pm2.53 851 . . . . . . . . 9 ((¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ¬ ∃𝑥 ¬ 𝜑 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
4434, 42, 43e01 44688 . . . . . . . 8 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)   )
45 exanali 1859 . . . . . . . . 9 (∃𝑥(𝜓 ∧ ¬ 𝜒) ↔ ¬ ∀𝑥(𝜓𝜒))
4645con5i 44520 . . . . . . . 8 (¬ ∃𝑥(𝜓 ∧ ¬ 𝜒) → ∀𝑥(𝜓𝜒))
4744, 46e1a 44624 . . . . . . 7 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥(𝜓𝜒)   )
48 sp 2184 . . . . . . 7 (∀𝑥(𝜓𝜒) → (𝜓𝜒))
4947, 48e1a 44624 . . . . . 6 (    ¬ ∃𝑥 ¬ 𝜃   ▶   (𝜓𝜒)   )
50 con3 153 . . . . . . 7 ((𝜓𝜒) → (¬ 𝜒 → ¬ 𝜓))
5150com12 32 . . . . . 6 𝜒 → ((𝜓𝜒) → ¬ 𝜓))
5231, 49, 51e21 44726 . . . . 5 (    ¬ ∃𝑥 ¬ 𝜃   ,    ¬ 𝜒   ▶    ¬ 𝜓   )
53 19.8a 2182 . . . . 5 𝜓 → ∃𝑥 ¬ 𝜓)
5452, 53e2 44628 . . . 4 (    ¬ ∃𝑥 ¬ 𝜃   ,    ¬ 𝜒   ▶   𝑥 ¬ 𝜓   )
55 hbe1 2144 . . . 4 (∃𝑥 ¬ 𝜓 → ∀𝑥𝑥 ¬ 𝜓)
5630, 54, 24, 55exinst11 44623 . . 3 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥 ¬ 𝜓   )
57 exnal 1827 . . . 4 (∃𝑥 ¬ 𝜓 ↔ ¬ ∀𝑥𝜓)
5857biimpi 216 . . 3 (∃𝑥 ¬ 𝜓 → ¬ ∀𝑥𝜓)
5956, 58e1a 44624 . 2 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∀𝑥𝜓   )
6059in1 44568 1 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-vd1 44567  df-vd2 44575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator