Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vk15.4jVD Structured version   Visualization version   GIF version

Theorem vk15.4jVD 41132
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 15 Excercise 4.f. found in the "Answers to Starred Exercises" on page 442 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. vk15.4j 40746 is vk15.4jVD 41132 without virtual deductions and was automatically derived from vk15.4jVD 41132. Step numbers greater than 25 are additional steps necessary for the sequent calculus proof not contained in the Fitch-style proof. Otherwise, step i of the User's Proof corresponds to step i of the Fitch-style proof.
h1:: ¬ (∃𝑥¬ 𝜑 ∧ ∃𝑥(𝜓 ¬ 𝜒))
h2:: (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏 ))
h3:: ¬ ∀𝑥(𝜏𝜑)
4:: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥¬ 𝜃   )
5:4: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥𝜃   )
6:3: 𝑥(𝜏 ∧ ¬ 𝜑)
7:: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜏 ∧ ¬ 𝜑)   )
8:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝜏   )
9:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ 𝜑   )
10:5: (   ¬ ∃𝑥¬ 𝜃   ▶   𝜃   )
11:10,8: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜃𝜏)   )
12:11: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥(𝜃𝜏)   )
13:12: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ¬ ∃𝑥(𝜃𝜏)   )
14:2,13: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ∀𝑥𝜒   )
140:: (∃𝑥¬ 𝜃 → ∀𝑥𝑥¬ 𝜃 )
141:140: (¬ ∃𝑥¬ 𝜃 → ∀𝑥¬ ∃𝑥 ¬ 𝜃)
142:: (∀𝑥𝜒 → ∀𝑥𝑥𝜒)
143:142: (¬ ∀𝑥𝜒 → ∀𝑥¬ ∀𝑥𝜒 )
144:6,14,141,143: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜒    )
15:1: (¬ ∃𝑥¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
16:9: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥¬ 𝜑   )
161:: (∃𝑥¬ 𝜑 → ∀𝑥𝑥¬ 𝜑 )
162:6,16,141,161: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜑    )
17:162: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ¬ ∃𝑥 ¬ 𝜑   )
18:15,17: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥( 𝜓 ∧ ¬ 𝜒)   )
19:18: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥(𝜓 𝜒)   )
20:144: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜒    )
21:: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜒   )
22:19: (   ¬ ∃𝑥¬ 𝜃   ▶   (𝜓𝜒 )   )
23:21,22: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜓   )
24:23: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶    𝑥¬ 𝜓   )
240:: (∃𝑥¬ 𝜓 → ∀𝑥𝑥¬ 𝜓 )
241:20,24,141,240: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜓    )
25:241: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜓    )
qed:25: (¬ ∃𝑥¬ 𝜃 → ¬ ∀𝑥𝜓)
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vk15.4jVD.1 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
vk15.4jVD.2 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
vk15.4jVD.3 ¬ ∀𝑥(𝜏𝜑)
Assertion
Ref Expression
vk15.4jVD (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)

Proof of Theorem vk15.4jVD
StepHypRef Expression
1 vk15.4jVD.3 . . . . . . 7 ¬ ∀𝑥(𝜏𝜑)
2 exanali 1852 . . . . . . . 8 (∃𝑥(𝜏 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝜏𝜑))
32biimpri 229 . . . . . . 7 (¬ ∀𝑥(𝜏𝜑) → ∃𝑥(𝜏 ∧ ¬ 𝜑))
41, 3e0a 40990 . . . . . 6 𝑥(𝜏 ∧ ¬ 𝜑)
5 vk15.4jVD.2 . . . . . . 7 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
6 idn1 40792 . . . . . . . . . . . 12 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∃𝑥 ¬ 𝜃   )
7 alex 1819 . . . . . . . . . . . . 13 (∀𝑥𝜃 ↔ ¬ ∃𝑥 ¬ 𝜃)
87biimpri 229 . . . . . . . . . . . 12 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥𝜃)
96, 8e1a 40845 . . . . . . . . . . 11 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥𝜃   )
10 sp 2174 . . . . . . . . . . 11 (∀𝑥𝜃𝜃)
119, 10e1a 40845 . . . . . . . . . 10 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝜃   )
12 idn2 40831 . . . . . . . . . . 11 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜏 ∧ ¬ 𝜑)   )
13 simpl 483 . . . . . . . . . . 11 ((𝜏 ∧ ¬ 𝜑) → 𝜏)
1412, 13e2 40849 . . . . . . . . . 10 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝜏   )
15 pm3.2 470 . . . . . . . . . 10 (𝜃 → (𝜏 → (𝜃𝜏)))
1611, 14, 15e12 40942 . . . . . . . . 9 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜃𝜏)   )
17 19.8a 2172 . . . . . . . . 9 ((𝜃𝜏) → ∃𝑥(𝜃𝜏))
1816, 17e2 40849 . . . . . . . 8 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥(𝜃𝜏)   )
19 notnot 144 . . . . . . . 8 (∃𝑥(𝜃𝜏) → ¬ ¬ ∃𝑥(𝜃𝜏))
2018, 19e2 40849 . . . . . . 7 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶    ¬ ¬ ∃𝑥(𝜃𝜏)   )
21 con3 156 . . . . . . 7 ((∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏)) → (¬ ¬ ∃𝑥(𝜃𝜏) → ¬ ∀𝑥𝜒))
225, 20, 21e02 40915 . . . . . 6 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶    ¬ ∀𝑥𝜒   )
23 hbe1 2140 . . . . . . 7 (∃𝑥 ¬ 𝜃 → ∀𝑥𝑥 ¬ 𝜃)
2423hbn 2297 . . . . . 6 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥 ¬ ∃𝑥 ¬ 𝜃)
25 hba1 2295 . . . . . . 7 (∀𝑥𝜒 → ∀𝑥𝑥𝜒)
2625hbn 2297 . . . . . 6 (¬ ∀𝑥𝜒 → ∀𝑥 ¬ ∀𝑥𝜒)
274, 22, 24, 26exinst01 40843 . . . . 5 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∀𝑥𝜒   )
28 exnal 1820 . . . . . 6 (∃𝑥 ¬ 𝜒 ↔ ¬ ∀𝑥𝜒)
2928biimpri 229 . . . . 5 (¬ ∀𝑥𝜒 → ∃𝑥 ¬ 𝜒)
3027, 29e1a 40845 . . . 4 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥 ¬ 𝜒   )
31 idn2 40831 . . . . . 6 (    ¬ ∃𝑥 ¬ 𝜃   ,    ¬ 𝜒   ▶    ¬ 𝜒   )
32 vk15.4jVD.1 . . . . . . . . . 10 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
33 pm3.13 990 . . . . . . . . . 10 (¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
3432, 33e0a 40990 . . . . . . . . 9 (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
35 simpr 485 . . . . . . . . . . . . 13 ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑)
3612, 35e2 40849 . . . . . . . . . . . 12 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶    ¬ 𝜑   )
37 19.8a 2172 . . . . . . . . . . . 12 𝜑 → ∃𝑥 ¬ 𝜑)
3836, 37e2 40849 . . . . . . . . . . 11 (    ¬ ∃𝑥 ¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥 ¬ 𝜑   )
39 hbe1 2140 . . . . . . . . . . 11 (∃𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
404, 38, 24, 39exinst01 40843 . . . . . . . . . 10 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥 ¬ 𝜑   )
41 notnot 144 . . . . . . . . . 10 (∃𝑥 ¬ 𝜑 → ¬ ¬ ∃𝑥 ¬ 𝜑)
4240, 41e1a 40845 . . . . . . . . 9 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ¬ ∃𝑥 ¬ 𝜑   )
43 pm2.53 847 . . . . . . . . 9 ((¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ¬ ∃𝑥 ¬ 𝜑 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
4434, 42, 43e01 40909 . . . . . . . 8 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)   )
45 exanali 1852 . . . . . . . . 9 (∃𝑥(𝜓 ∧ ¬ 𝜒) ↔ ¬ ∀𝑥(𝜓𝜒))
4645con5i 40741 . . . . . . . 8 (¬ ∃𝑥(𝜓 ∧ ¬ 𝜒) → ∀𝑥(𝜓𝜒))
4744, 46e1a 40845 . . . . . . 7 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥(𝜓𝜒)   )
48 sp 2174 . . . . . . 7 (∀𝑥(𝜓𝜒) → (𝜓𝜒))
4947, 48e1a 40845 . . . . . 6 (    ¬ ∃𝑥 ¬ 𝜃   ▶   (𝜓𝜒)   )
50 con3 156 . . . . . . 7 ((𝜓𝜒) → (¬ 𝜒 → ¬ 𝜓))
5150com12 32 . . . . . 6 𝜒 → ((𝜓𝜒) → ¬ 𝜓))
5231, 49, 51e21 40948 . . . . 5 (    ¬ ∃𝑥 ¬ 𝜃   ,    ¬ 𝜒   ▶    ¬ 𝜓   )
53 19.8a 2172 . . . . 5 𝜓 → ∃𝑥 ¬ 𝜓)
5452, 53e2 40849 . . . 4 (    ¬ ∃𝑥 ¬ 𝜃   ,    ¬ 𝜒   ▶   𝑥 ¬ 𝜓   )
55 hbe1 2140 . . . 4 (∃𝑥 ¬ 𝜓 → ∀𝑥𝑥 ¬ 𝜓)
5630, 54, 24, 55exinst11 40844 . . 3 (    ¬ ∃𝑥 ¬ 𝜃   ▶   𝑥 ¬ 𝜓   )
57 exnal 1820 . . . 4 (∃𝑥 ¬ 𝜓 ↔ ¬ ∀𝑥𝜓)
5857biimpi 217 . . 3 (∃𝑥 ¬ 𝜓 → ¬ ∀𝑥𝜓)
5956, 58e1a 40845 . 2 (    ¬ ∃𝑥 ¬ 𝜃   ▶    ¬ ∀𝑥𝜓   )
6059in1 40789 1 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 843  wal 1528  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-10 2138  ax-12 2169
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ex 1774  df-nf 1778  df-vd1 40788  df-vd2 40796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator