Proof of Theorem vk15.4jVD
Step | Hyp | Ref
| Expression |
1 | | vk15.4jVD.3 |
. . . . . . 7
⊢ ¬
∀𝑥(𝜏 → 𝜑) |
2 | | exanali 1863 |
. . . . . . . 8
⊢
(∃𝑥(𝜏 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝜏 → 𝜑)) |
3 | 2 | biimpri 227 |
. . . . . . 7
⊢ (¬
∀𝑥(𝜏 → 𝜑) → ∃𝑥(𝜏 ∧ ¬ 𝜑)) |
4 | 1, 3 | e0a 42281 |
. . . . . 6
⊢
∃𝑥(𝜏 ∧ ¬ 𝜑) |
5 | | vk15.4jVD.2 |
. . . . . . 7
⊢
(∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏)) |
6 | | idn1 42083 |
. . . . . . . . . . . 12
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ ¬
∃𝑥 ¬ 𝜃 ) |
7 | | alex 1829 |
. . . . . . . . . . . . 13
⊢
(∀𝑥𝜃 ↔ ¬ ∃𝑥 ¬ 𝜃) |
8 | 7 | biimpri 227 |
. . . . . . . . . . . 12
⊢ (¬
∃𝑥 ¬ 𝜃 → ∀𝑥𝜃) |
9 | 6, 8 | e1a 42136 |
. . . . . . . . . . 11
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ ∀𝑥𝜃 ) |
10 | | sp 2178 |
. . . . . . . . . . 11
⊢
(∀𝑥𝜃 → 𝜃) |
11 | 9, 10 | e1a 42136 |
. . . . . . . . . 10
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ 𝜃 ) |
12 | | idn2 42122 |
. . . . . . . . . . 11
⊢ ( ¬ ∃𝑥 ¬ 𝜃 , (𝜏 ∧ ¬ 𝜑) ▶ (𝜏 ∧ ¬ 𝜑) ) |
13 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝜏 ∧ ¬ 𝜑) → 𝜏) |
14 | 12, 13 | e2 42140 |
. . . . . . . . . 10
⊢ ( ¬ ∃𝑥 ¬ 𝜃 , (𝜏 ∧ ¬ 𝜑) ▶ 𝜏 ) |
15 | | pm3.2 469 |
. . . . . . . . . 10
⊢ (𝜃 → (𝜏 → (𝜃 ∧ 𝜏))) |
16 | 11, 14, 15 | e12 42233 |
. . . . . . . . 9
⊢ ( ¬ ∃𝑥 ¬ 𝜃 , (𝜏 ∧ ¬ 𝜑) ▶ (𝜃 ∧ 𝜏) ) |
17 | | 19.8a 2176 |
. . . . . . . . 9
⊢ ((𝜃 ∧ 𝜏) → ∃𝑥(𝜃 ∧ 𝜏)) |
18 | 16, 17 | e2 42140 |
. . . . . . . 8
⊢ ( ¬ ∃𝑥 ¬ 𝜃 , (𝜏 ∧ ¬ 𝜑) ▶ ∃𝑥(𝜃 ∧ 𝜏) ) |
19 | | notnot 142 |
. . . . . . . 8
⊢
(∃𝑥(𝜃 ∧ 𝜏) → ¬ ¬ ∃𝑥(𝜃 ∧ 𝜏)) |
20 | 18, 19 | e2 42140 |
. . . . . . 7
⊢ ( ¬ ∃𝑥 ¬ 𝜃 , (𝜏 ∧ ¬ 𝜑) ▶ ¬
¬ ∃𝑥(𝜃 ∧ 𝜏) ) |
21 | | con3 153 |
. . . . . . 7
⊢
((∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏)) → (¬ ¬ ∃𝑥(𝜃 ∧ 𝜏) → ¬ ∀𝑥𝜒)) |
22 | 5, 20, 21 | e02 42206 |
. . . . . 6
⊢ ( ¬ ∃𝑥 ¬ 𝜃 , (𝜏 ∧ ¬ 𝜑) ▶ ¬
∀𝑥𝜒 ) |
23 | | hbe1 2141 |
. . . . . . 7
⊢
(∃𝑥 ¬
𝜃 → ∀𝑥∃𝑥 ¬ 𝜃) |
24 | 23 | hbn 2295 |
. . . . . 6
⊢ (¬
∃𝑥 ¬ 𝜃 → ∀𝑥 ¬ ∃𝑥 ¬ 𝜃) |
25 | | hba1 2293 |
. . . . . . 7
⊢
(∀𝑥𝜒 → ∀𝑥∀𝑥𝜒) |
26 | 25 | hbn 2295 |
. . . . . 6
⊢ (¬
∀𝑥𝜒 → ∀𝑥 ¬ ∀𝑥𝜒) |
27 | 4, 22, 24, 26 | exinst01 42134 |
. . . . 5
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ ¬
∀𝑥𝜒 ) |
28 | | exnal 1830 |
. . . . . 6
⊢
(∃𝑥 ¬
𝜒 ↔ ¬ ∀𝑥𝜒) |
29 | 28 | biimpri 227 |
. . . . 5
⊢ (¬
∀𝑥𝜒 → ∃𝑥 ¬ 𝜒) |
30 | 27, 29 | e1a 42136 |
. . . 4
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ ∃𝑥 ¬ 𝜒 ) |
31 | | idn2 42122 |
. . . . . 6
⊢ ( ¬ ∃𝑥 ¬ 𝜃 , ¬ 𝜒 ▶ ¬
𝜒 ) |
32 | | vk15.4jVD.1 |
. . . . . . . . . 10
⊢ ¬
(∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) |
33 | | pm3.13 991 |
. . . . . . . . . 10
⊢ (¬
(∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))) |
34 | 32, 33 | e0a 42281 |
. . . . . . . . 9
⊢ (¬
∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)) |
35 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑) |
36 | 12, 35 | e2 42140 |
. . . . . . . . . . . 12
⊢ ( ¬ ∃𝑥 ¬ 𝜃 , (𝜏 ∧ ¬ 𝜑) ▶ ¬
𝜑 ) |
37 | | 19.8a 2176 |
. . . . . . . . . . . 12
⊢ (¬
𝜑 → ∃𝑥 ¬ 𝜑) |
38 | 36, 37 | e2 42140 |
. . . . . . . . . . 11
⊢ ( ¬ ∃𝑥 ¬ 𝜃 , (𝜏 ∧ ¬ 𝜑) ▶ ∃𝑥 ¬ 𝜑 ) |
39 | | hbe1 2141 |
. . . . . . . . . . 11
⊢
(∃𝑥 ¬
𝜑 → ∀𝑥∃𝑥 ¬ 𝜑) |
40 | 4, 38, 24, 39 | exinst01 42134 |
. . . . . . . . . 10
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ ∃𝑥 ¬ 𝜑 ) |
41 | | notnot 142 |
. . . . . . . . . 10
⊢
(∃𝑥 ¬
𝜑 → ¬ ¬
∃𝑥 ¬ 𝜑) |
42 | 40, 41 | e1a 42136 |
. . . . . . . . 9
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ ¬
¬ ∃𝑥 ¬ 𝜑 ) |
43 | | pm2.53 847 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ¬ ∃𝑥 ¬ 𝜑 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))) |
44 | 34, 42, 43 | e01 42200 |
. . . . . . . 8
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ ¬
∃𝑥(𝜓 ∧ ¬ 𝜒) ) |
45 | | exanali 1863 |
. . . . . . . . 9
⊢
(∃𝑥(𝜓 ∧ ¬ 𝜒) ↔ ¬ ∀𝑥(𝜓 → 𝜒)) |
46 | 45 | con5i 42032 |
. . . . . . . 8
⊢ (¬
∃𝑥(𝜓 ∧ ¬ 𝜒) → ∀𝑥(𝜓 → 𝜒)) |
47 | 44, 46 | e1a 42136 |
. . . . . . 7
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ ∀𝑥(𝜓 → 𝜒) ) |
48 | | sp 2178 |
. . . . . . 7
⊢
(∀𝑥(𝜓 → 𝜒) → (𝜓 → 𝜒)) |
49 | 47, 48 | e1a 42136 |
. . . . . 6
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ (𝜓 → 𝜒) ) |
50 | | con3 153 |
. . . . . . 7
⊢ ((𝜓 → 𝜒) → (¬ 𝜒 → ¬ 𝜓)) |
51 | 50 | com12 32 |
. . . . . 6
⊢ (¬
𝜒 → ((𝜓 → 𝜒) → ¬ 𝜓)) |
52 | 31, 49, 51 | e21 42239 |
. . . . 5
⊢ ( ¬ ∃𝑥 ¬ 𝜃 , ¬ 𝜒 ▶ ¬
𝜓 ) |
53 | | 19.8a 2176 |
. . . . 5
⊢ (¬
𝜓 → ∃𝑥 ¬ 𝜓) |
54 | 52, 53 | e2 42140 |
. . . 4
⊢ ( ¬ ∃𝑥 ¬ 𝜃 , ¬ 𝜒 ▶ ∃𝑥 ¬ 𝜓 ) |
55 | | hbe1 2141 |
. . . 4
⊢
(∃𝑥 ¬
𝜓 → ∀𝑥∃𝑥 ¬ 𝜓) |
56 | 30, 54, 24, 55 | exinst11 42135 |
. . 3
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ ∃𝑥 ¬ 𝜓 ) |
57 | | exnal 1830 |
. . . 4
⊢
(∃𝑥 ¬
𝜓 ↔ ¬ ∀𝑥𝜓) |
58 | 57 | biimpi 215 |
. . 3
⊢
(∃𝑥 ¬
𝜓 → ¬ ∀𝑥𝜓) |
59 | 56, 58 | e1a 42136 |
. 2
⊢ ( ¬ ∃𝑥 ¬ 𝜃 ▶ ¬
∀𝑥𝜓 ) |
60 | 59 | in1 42080 |
1
⊢ (¬
∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓) |