Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vk15.4j Structured version   Visualization version   GIF version

Theorem vk15.4j 42148
Description: Excercise 4j of Unit 15 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. This proof is the minimized Hilbert-style axiomatic version of the Fitch-style Natural Deduction proof found on page 442 of Klenk and was automatically derived from that proof. vk15.4j 42148 is vk15.4jVD 42534 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vk15.4j.1 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
vk15.4j.2 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
vk15.4j.3 ¬ ∀𝑥(𝜏𝜑)
Assertion
Ref Expression
vk15.4j (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)

Proof of Theorem vk15.4j
StepHypRef Expression
1 vk15.4j.3 . . . . . 6 ¬ ∀𝑥(𝜏𝜑)
2 exanali 1862 . . . . . 6 (∃𝑥(𝜏 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝜏𝜑))
31, 2mpbir 230 . . . . 5 𝑥(𝜏 ∧ ¬ 𝜑)
4 vk15.4j.2 . . . . . 6 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
5 alex 1828 . . . . . . . . . 10 (∀𝑥𝜃 ↔ ¬ ∃𝑥 ¬ 𝜃)
65biimpri 227 . . . . . . . . 9 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥𝜃)
7619.21bi 2182 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜃𝜃)
8 simpl 483 . . . . . . . . 9 ((𝜏 ∧ ¬ 𝜑) → 𝜏)
98a1i 11 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → 𝜏))
10 19.8a 2174 . . . . . . . 8 ((𝜃𝜏) → ∃𝑥(𝜃𝜏))
117, 9, 10syl6an 681 . . . . . . 7 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ∃𝑥(𝜃𝜏)))
12 notnot 142 . . . . . . 7 (∃𝑥(𝜃𝜏) → ¬ ¬ ∃𝑥(𝜃𝜏))
1311, 12syl6 35 . . . . . 6 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ ¬ ∃𝑥(𝜃𝜏)))
14 con3 153 . . . . . 6 ((∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏)) → (¬ ¬ ∃𝑥(𝜃𝜏) → ¬ ∀𝑥𝜒))
154, 13, 14mpsylsyld 69 . . . . 5 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ ∀𝑥𝜒))
16 hbe1 2139 . . . . . 6 (∃𝑥 ¬ 𝜃 → ∀𝑥𝑥 ¬ 𝜃)
1716hbn 2292 . . . . 5 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥 ¬ ∃𝑥 ¬ 𝜃)
18 hbn1 2138 . . . . 5 (¬ ∀𝑥𝜒 → ∀𝑥 ¬ ∀𝑥𝜒)
193, 15, 17, 18eexinst01 42146 . . . 4 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜒)
20 exnal 1829 . . . 4 (∃𝑥 ¬ 𝜒 ↔ ¬ ∀𝑥𝜒)
2119, 20sylibr 233 . . 3 (¬ ∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜒)
22 vk15.4j.1 . . . . . . . . 9 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
23 pm3.13 992 . . . . . . . . 9 (¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
2422, 23ax-mp 5 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
25 simpr 485 . . . . . . . . . . . 12 ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑)
2625a1i 11 . . . . . . . . . . 11 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑))
27 19.8a 2174 . . . . . . . . . . 11 𝜑 → ∃𝑥 ¬ 𝜑)
2826, 27syl6 35 . . . . . . . . . 10 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ∃𝑥 ¬ 𝜑))
29 hbe1 2139 . . . . . . . . . 10 (∃𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
303, 28, 17, 29eexinst01 42146 . . . . . . . . 9 (¬ ∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜑)
31 notnot 142 . . . . . . . . 9 (∃𝑥 ¬ 𝜑 → ¬ ¬ ∃𝑥 ¬ 𝜑)
3230, 31syl 17 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜃 → ¬ ¬ ∃𝑥 ¬ 𝜑)
33 pm2.53 848 . . . . . . . 8 ((¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ¬ ∃𝑥 ¬ 𝜑 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
3424, 32, 33mpsyl 68 . . . . . . 7 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
35 exanali 1862 . . . . . . . 8 (∃𝑥(𝜓 ∧ ¬ 𝜒) ↔ ¬ ∀𝑥(𝜓𝜒))
3635con5i 42143 . . . . . . 7 (¬ ∃𝑥(𝜓 ∧ ¬ 𝜒) → ∀𝑥(𝜓𝜒))
3734, 36syl 17 . . . . . 6 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥(𝜓𝜒))
383719.21bi 2182 . . . . 5 (¬ ∃𝑥 ¬ 𝜃 → (𝜓𝜒))
3938con3d 152 . . . 4 (¬ ∃𝑥 ¬ 𝜃 → (¬ 𝜒 → ¬ 𝜓))
40 19.8a 2174 . . . 4 𝜓 → ∃𝑥 ¬ 𝜓)
4139, 40syl6 35 . . 3 (¬ ∃𝑥 ¬ 𝜃 → (¬ 𝜒 → ∃𝑥 ¬ 𝜓))
42 hbe1 2139 . . 3 (∃𝑥 ¬ 𝜓 → ∀𝑥𝑥 ¬ 𝜓)
4321, 41, 17, 42eexinst11 42147 . 2 (¬ ∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜓)
44 exnal 1829 . 2 (∃𝑥 ¬ 𝜓 ↔ ¬ ∀𝑥𝜓)
4543, 44sylib 217 1 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator