Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vk15.4j Structured version   Visualization version   GIF version

Theorem vk15.4j 42902
Description: Excercise 4j of Unit 15 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. This proof is the minimized Hilbert-style axiomatic version of the Fitch-style Natural Deduction proof found on page 442 of Klenk and was automatically derived from that proof. vk15.4j 42902 is vk15.4jVD 43288 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vk15.4j.1 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
vk15.4j.2 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
vk15.4j.3 ¬ ∀𝑥(𝜏𝜑)
Assertion
Ref Expression
vk15.4j (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)

Proof of Theorem vk15.4j
StepHypRef Expression
1 vk15.4j.3 . . . . . 6 ¬ ∀𝑥(𝜏𝜑)
2 exanali 1863 . . . . . 6 (∃𝑥(𝜏 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝜏𝜑))
31, 2mpbir 230 . . . . 5 𝑥(𝜏 ∧ ¬ 𝜑)
4 vk15.4j.2 . . . . . 6 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
5 alex 1829 . . . . . . . . . 10 (∀𝑥𝜃 ↔ ¬ ∃𝑥 ¬ 𝜃)
65biimpri 227 . . . . . . . . 9 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥𝜃)
7619.21bi 2183 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜃𝜃)
8 simpl 484 . . . . . . . . 9 ((𝜏 ∧ ¬ 𝜑) → 𝜏)
98a1i 11 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → 𝜏))
10 19.8a 2175 . . . . . . . 8 ((𝜃𝜏) → ∃𝑥(𝜃𝜏))
117, 9, 10syl6an 683 . . . . . . 7 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ∃𝑥(𝜃𝜏)))
12 notnot 142 . . . . . . 7 (∃𝑥(𝜃𝜏) → ¬ ¬ ∃𝑥(𝜃𝜏))
1311, 12syl6 35 . . . . . 6 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ ¬ ∃𝑥(𝜃𝜏)))
14 con3 153 . . . . . 6 ((∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏)) → (¬ ¬ ∃𝑥(𝜃𝜏) → ¬ ∀𝑥𝜒))
154, 13, 14mpsylsyld 69 . . . . 5 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ ∀𝑥𝜒))
16 hbe1 2140 . . . . . 6 (∃𝑥 ¬ 𝜃 → ∀𝑥𝑥 ¬ 𝜃)
1716hbn 2292 . . . . 5 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥 ¬ ∃𝑥 ¬ 𝜃)
18 hbn1 2139 . . . . 5 (¬ ∀𝑥𝜒 → ∀𝑥 ¬ ∀𝑥𝜒)
193, 15, 17, 18eexinst01 42900 . . . 4 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜒)
20 exnal 1830 . . . 4 (∃𝑥 ¬ 𝜒 ↔ ¬ ∀𝑥𝜒)
2119, 20sylibr 233 . . 3 (¬ ∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜒)
22 vk15.4j.1 . . . . . . . . 9 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
23 pm3.13 994 . . . . . . . . 9 (¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
2422, 23ax-mp 5 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
25 simpr 486 . . . . . . . . . . . 12 ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑)
2625a1i 11 . . . . . . . . . . 11 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑))
27 19.8a 2175 . . . . . . . . . . 11 𝜑 → ∃𝑥 ¬ 𝜑)
2826, 27syl6 35 . . . . . . . . . 10 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ∃𝑥 ¬ 𝜑))
29 hbe1 2140 . . . . . . . . . 10 (∃𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
303, 28, 17, 29eexinst01 42900 . . . . . . . . 9 (¬ ∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜑)
31 notnot 142 . . . . . . . . 9 (∃𝑥 ¬ 𝜑 → ¬ ¬ ∃𝑥 ¬ 𝜑)
3230, 31syl 17 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜃 → ¬ ¬ ∃𝑥 ¬ 𝜑)
33 pm2.53 850 . . . . . . . 8 ((¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ¬ ∃𝑥 ¬ 𝜑 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
3424, 32, 33mpsyl 68 . . . . . . 7 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
35 exanali 1863 . . . . . . . 8 (∃𝑥(𝜓 ∧ ¬ 𝜒) ↔ ¬ ∀𝑥(𝜓𝜒))
3635con5i 42897 . . . . . . 7 (¬ ∃𝑥(𝜓 ∧ ¬ 𝜒) → ∀𝑥(𝜓𝜒))
3734, 36syl 17 . . . . . 6 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥(𝜓𝜒))
383719.21bi 2183 . . . . 5 (¬ ∃𝑥 ¬ 𝜃 → (𝜓𝜒))
3938con3d 152 . . . 4 (¬ ∃𝑥 ¬ 𝜃 → (¬ 𝜒 → ¬ 𝜓))
40 19.8a 2175 . . . 4 𝜓 → ∃𝑥 ¬ 𝜓)
4139, 40syl6 35 . . 3 (¬ ∃𝑥 ¬ 𝜃 → (¬ 𝜒 → ∃𝑥 ¬ 𝜓))
42 hbe1 2140 . . 3 (∃𝑥 ¬ 𝜓 → ∀𝑥𝑥 ¬ 𝜓)
4321, 41, 17, 42eexinst11 42901 . 2 (¬ ∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜓)
44 exnal 1830 . 2 (∃𝑥 ¬ 𝜓 ↔ ¬ ∀𝑥𝜓)
4543, 44sylib 217 1 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846  wal 1540  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2138  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator