Proof of Theorem vk15.4j
Step | Hyp | Ref
| Expression |
1 | | vk15.4j.3 |
. . . . . 6
⊢ ¬
∀𝑥(𝜏 → 𝜑) |
2 | | exanali 1863 |
. . . . . 6
⊢
(∃𝑥(𝜏 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝜏 → 𝜑)) |
3 | 1, 2 | mpbir 230 |
. . . . 5
⊢
∃𝑥(𝜏 ∧ ¬ 𝜑) |
4 | | vk15.4j.2 |
. . . . . 6
⊢
(∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏)) |
5 | | alex 1829 |
. . . . . . . . . 10
⊢
(∀𝑥𝜃 ↔ ¬ ∃𝑥 ¬ 𝜃) |
6 | 5 | biimpri 227 |
. . . . . . . . 9
⊢ (¬
∃𝑥 ¬ 𝜃 → ∀𝑥𝜃) |
7 | 6 | 19.21bi 2184 |
. . . . . . . 8
⊢ (¬
∃𝑥 ¬ 𝜃 → 𝜃) |
8 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜏 ∧ ¬ 𝜑) → 𝜏) |
9 | 8 | a1i 11 |
. . . . . . . 8
⊢ (¬
∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → 𝜏)) |
10 | | 19.8a 2176 |
. . . . . . . 8
⊢ ((𝜃 ∧ 𝜏) → ∃𝑥(𝜃 ∧ 𝜏)) |
11 | 7, 9, 10 | syl6an 680 |
. . . . . . 7
⊢ (¬
∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ∃𝑥(𝜃 ∧ 𝜏))) |
12 | | notnot 142 |
. . . . . . 7
⊢
(∃𝑥(𝜃 ∧ 𝜏) → ¬ ¬ ∃𝑥(𝜃 ∧ 𝜏)) |
13 | 11, 12 | syl6 35 |
. . . . . 6
⊢ (¬
∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ ¬ ∃𝑥(𝜃 ∧ 𝜏))) |
14 | | con3 153 |
. . . . . 6
⊢
((∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏)) → (¬ ¬ ∃𝑥(𝜃 ∧ 𝜏) → ¬ ∀𝑥𝜒)) |
15 | 4, 13, 14 | mpsylsyld 69 |
. . . . 5
⊢ (¬
∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ ∀𝑥𝜒)) |
16 | | hbe1 2141 |
. . . . . 6
⊢
(∃𝑥 ¬
𝜃 → ∀𝑥∃𝑥 ¬ 𝜃) |
17 | 16 | hbn 2295 |
. . . . 5
⊢ (¬
∃𝑥 ¬ 𝜃 → ∀𝑥 ¬ ∃𝑥 ¬ 𝜃) |
18 | | hbn1 2140 |
. . . . 5
⊢ (¬
∀𝑥𝜒 → ∀𝑥 ¬ ∀𝑥𝜒) |
19 | 3, 15, 17, 18 | eexinst01 42035 |
. . . 4
⊢ (¬
∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜒) |
20 | | exnal 1830 |
. . . 4
⊢
(∃𝑥 ¬
𝜒 ↔ ¬ ∀𝑥𝜒) |
21 | 19, 20 | sylibr 233 |
. . 3
⊢ (¬
∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜒) |
22 | | vk15.4j.1 |
. . . . . . . . 9
⊢ ¬
(∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) |
23 | | pm3.13 991 |
. . . . . . . . 9
⊢ (¬
(∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . 8
⊢ (¬
∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)) |
25 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑) |
26 | 25 | a1i 11 |
. . . . . . . . . . 11
⊢ (¬
∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑)) |
27 | | 19.8a 2176 |
. . . . . . . . . . 11
⊢ (¬
𝜑 → ∃𝑥 ¬ 𝜑) |
28 | 26, 27 | syl6 35 |
. . . . . . . . . 10
⊢ (¬
∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ∃𝑥 ¬ 𝜑)) |
29 | | hbe1 2141 |
. . . . . . . . . 10
⊢
(∃𝑥 ¬
𝜑 → ∀𝑥∃𝑥 ¬ 𝜑) |
30 | 3, 28, 17, 29 | eexinst01 42035 |
. . . . . . . . 9
⊢ (¬
∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜑) |
31 | | notnot 142 |
. . . . . . . . 9
⊢
(∃𝑥 ¬
𝜑 → ¬ ¬
∃𝑥 ¬ 𝜑) |
32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ (¬
∃𝑥 ¬ 𝜃 → ¬ ¬ ∃𝑥 ¬ 𝜑) |
33 | | pm2.53 847 |
. . . . . . . 8
⊢ ((¬
∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ¬ ∃𝑥 ¬ 𝜑 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))) |
34 | 24, 32, 33 | mpsyl 68 |
. . . . . . 7
⊢ (¬
∃𝑥 ¬ 𝜃 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)) |
35 | | exanali 1863 |
. . . . . . . 8
⊢
(∃𝑥(𝜓 ∧ ¬ 𝜒) ↔ ¬ ∀𝑥(𝜓 → 𝜒)) |
36 | 35 | con5i 42032 |
. . . . . . 7
⊢ (¬
∃𝑥(𝜓 ∧ ¬ 𝜒) → ∀𝑥(𝜓 → 𝜒)) |
37 | 34, 36 | syl 17 |
. . . . . 6
⊢ (¬
∃𝑥 ¬ 𝜃 → ∀𝑥(𝜓 → 𝜒)) |
38 | 37 | 19.21bi 2184 |
. . . . 5
⊢ (¬
∃𝑥 ¬ 𝜃 → (𝜓 → 𝜒)) |
39 | 38 | con3d 152 |
. . . 4
⊢ (¬
∃𝑥 ¬ 𝜃 → (¬ 𝜒 → ¬ 𝜓)) |
40 | | 19.8a 2176 |
. . . 4
⊢ (¬
𝜓 → ∃𝑥 ¬ 𝜓) |
41 | 39, 40 | syl6 35 |
. . 3
⊢ (¬
∃𝑥 ¬ 𝜃 → (¬ 𝜒 → ∃𝑥 ¬ 𝜓)) |
42 | | hbe1 2141 |
. . 3
⊢
(∃𝑥 ¬
𝜓 → ∀𝑥∃𝑥 ¬ 𝜓) |
43 | 21, 41, 17, 42 | eexinst11 42036 |
. 2
⊢ (¬
∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜓) |
44 | | exnal 1830 |
. 2
⊢
(∃𝑥 ¬
𝜓 ↔ ¬ ∀𝑥𝜓) |
45 | 43, 44 | sylib 217 |
1
⊢ (¬
∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓) |