| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimexi | Structured version Visualization version GIF version | ||
| Description: Inference similar to Theorem 19.23 of [Margaris] p. 90. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| exlimexi.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| exlimexi.2 | ⊢ (∃𝑥𝜑 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| exlimexi | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 2142 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | exlimexi.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | exlimexi.2 | . . 3 ⊢ (∃𝑥𝜑 → (𝜑 → 𝜓)) | |
| 4 | 1, 2, 3 | exlimdh 2289 | . 2 ⊢ (∃𝑥𝜑 → (∃𝑥𝜑 → 𝜓)) |
| 5 | 4 | pm2.43i 52 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: sb5ALT 44478 exinst 44577 |
| Copyright terms: Public domain | W3C validator |