Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimexi | Structured version Visualization version GIF version |
Description: Inference similar to Theorem 19.23 of [Margaris] p. 90. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
exlimexi.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
exlimexi.2 | ⊢ (∃𝑥𝜑 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
exlimexi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 2141 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
2 | exlimexi.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | exlimexi.2 | . . 3 ⊢ (∃𝑥𝜑 → (𝜑 → 𝜓)) | |
4 | 1, 2, 3 | exlimdh 2290 | . 2 ⊢ (∃𝑥𝜑 → (∃𝑥𝜑 → 𝜓)) |
5 | 4 | pm2.43i 52 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: sb5ALT 42034 exinst 42133 |
Copyright terms: Public domain | W3C validator |