Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  con5 Structured version   Visualization version   GIF version

Theorem con5 42031
Description: Biconditional contraposition variation. This proof is con5VD 42409 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
con5 ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))

Proof of Theorem con5
StepHypRef Expression
1 biimpr 219 . 2 ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜓𝜑))
21con1d 145 1 ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  con5i  42032
  Copyright terms: Public domain W3C validator