Detailed syntax breakdown of Definition df-0g
| Step | Hyp | Ref
| Expression |
| 1 | | c0g 17484 |
. 2
class
0g |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | ve |
. . . . . . 7
setvar 𝑒 |
| 5 | 4 | cv 1539 |
. . . . . 6
class 𝑒 |
| 6 | 2 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 7 | | cbs 17247 |
. . . . . . 7
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . . . 6
class
(Base‘𝑔) |
| 9 | 5, 8 | wcel 2108 |
. . . . 5
wff 𝑒 ∈ (Base‘𝑔) |
| 10 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 11 | 10 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 12 | | cplusg 17297 |
. . . . . . . . . 10
class
+g |
| 13 | 6, 12 | cfv 6561 |
. . . . . . . . 9
class
(+g‘𝑔) |
| 14 | 5, 11, 13 | co 7431 |
. . . . . . . 8
class (𝑒(+g‘𝑔)𝑥) |
| 15 | 14, 11 | wceq 1540 |
. . . . . . 7
wff (𝑒(+g‘𝑔)𝑥) = 𝑥 |
| 16 | 11, 5, 13 | co 7431 |
. . . . . . . 8
class (𝑥(+g‘𝑔)𝑒) |
| 17 | 16, 11 | wceq 1540 |
. . . . . . 7
wff (𝑥(+g‘𝑔)𝑒) = 𝑥 |
| 18 | 15, 17 | wa 395 |
. . . . . 6
wff ((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥) |
| 19 | 18, 10, 8 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
(Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥) |
| 20 | 9, 19 | wa 395 |
. . . 4
wff (𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) |
| 21 | 20, 4 | cio 6512 |
. . 3
class
(℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥))) |
| 22 | 2, 3, 21 | cmpt 5225 |
. 2
class (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) |
| 23 | 1, 22 | wceq 1540 |
1
wff
0g = (𝑔
∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) |