Step | Hyp | Ref
| Expression |
1 | | grpidval.o |
. 2
⊢ 0 =
(0g‘𝐺) |
2 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
3 | | grpidval.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
4 | 2, 3 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
5 | 4 | eleq2d 2823 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝑒 ∈ (Base‘𝑔) ↔ 𝑒 ∈ 𝐵)) |
6 | | fveq2 6717 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) |
7 | | grpidval.p |
. . . . . . . . . . 11
⊢ + =
(+g‘𝐺) |
8 | 6, 7 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
9 | 8 | oveqd 7230 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑒(+g‘𝑔)𝑥) = (𝑒 + 𝑥)) |
10 | 9 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑒(+g‘𝑔)𝑥) = 𝑥 ↔ (𝑒 + 𝑥) = 𝑥)) |
11 | 8 | oveqd 7230 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑒) = (𝑥 + 𝑒)) |
12 | 11 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑥(+g‘𝑔)𝑒) = 𝑥 ↔ (𝑥 + 𝑒) = 𝑥)) |
13 | 10, 12 | anbi12d 634 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥) ↔ ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
14 | 4, 13 | raleqbidv 3313 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
15 | 5, 14 | anbi12d 634 |
. . . . 5
⊢ (𝑔 = 𝐺 → ((𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) ↔ (𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))) |
16 | 15 | iotabidv 6364 |
. . . 4
⊢ (𝑔 = 𝐺 → (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))) |
17 | | df-0g 16946 |
. . . 4
⊢
0g = (𝑔
∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) |
18 | | iotaex 6360 |
. . . 4
⊢
(℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) ∈ V |
19 | 16, 17, 18 | fvmpt 6818 |
. . 3
⊢ (𝐺 ∈ V →
(0g‘𝐺) =
(℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))) |
20 | | fvprc 6709 |
. . . 4
⊢ (¬
𝐺 ∈ V →
(0g‘𝐺) =
∅) |
21 | | euex 2576 |
. . . . . 6
⊢
(∃!𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → ∃𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
22 | | n0i 4248 |
. . . . . . . . 9
⊢ (𝑒 ∈ 𝐵 → ¬ 𝐵 = ∅) |
23 | | fvprc 6709 |
. . . . . . . . . 10
⊢ (¬
𝐺 ∈ V →
(Base‘𝐺) =
∅) |
24 | 3, 23 | syl5eq 2790 |
. . . . . . . . 9
⊢ (¬
𝐺 ∈ V → 𝐵 = ∅) |
25 | 22, 24 | nsyl2 143 |
. . . . . . . 8
⊢ (𝑒 ∈ 𝐵 → 𝐺 ∈ V) |
26 | 25 | adantr 484 |
. . . . . . 7
⊢ ((𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → 𝐺 ∈ V) |
27 | 26 | exlimiv 1938 |
. . . . . 6
⊢
(∃𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → 𝐺 ∈ V) |
28 | 21, 27 | syl 17 |
. . . . 5
⊢
(∃!𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → 𝐺 ∈ V) |
29 | | iotanul 6358 |
. . . . 5
⊢ (¬
∃!𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) = ∅) |
30 | 28, 29 | nsyl5 162 |
. . . 4
⊢ (¬
𝐺 ∈ V →
(℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) = ∅) |
31 | 20, 30 | eqtr4d 2780 |
. . 3
⊢ (¬
𝐺 ∈ V →
(0g‘𝐺) =
(℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))) |
32 | 19, 31 | pm2.61i 185 |
. 2
⊢
(0g‘𝐺) = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
33 | 1, 32 | eqtri 2765 |
1
⊢ 0 =
(℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |