MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidval Structured version   Visualization version   GIF version

Theorem grpidval 18639
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpidval.b 𝐵 = (Base‘𝐺)
grpidval.p + = (+g𝐺)
grpidval.o 0 = (0g𝐺)
Assertion
Ref Expression
grpidval 0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
Distinct variable groups:   𝑥,𝑒,𝐵   𝑒,𝐺,𝑥
Allowed substitution hints:   + (𝑥,𝑒)   0 (𝑥,𝑒)

Proof of Theorem grpidval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpidval.o . 2 0 = (0g𝐺)
2 fveq2 6876 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 grpidval.b . . . . . . . 8 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2788 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
54eleq2d 2820 . . . . . 6 (𝑔 = 𝐺 → (𝑒 ∈ (Base‘𝑔) ↔ 𝑒𝐵))
6 fveq2 6876 . . . . . . . . . . 11 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
7 grpidval.p . . . . . . . . . . 11 + = (+g𝐺)
86, 7eqtr4di 2788 . . . . . . . . . 10 (𝑔 = 𝐺 → (+g𝑔) = + )
98oveqd 7422 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑒(+g𝑔)𝑥) = (𝑒 + 𝑥))
109eqeq1d 2737 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑒(+g𝑔)𝑥) = 𝑥 ↔ (𝑒 + 𝑥) = 𝑥))
118oveqd 7422 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑒) = (𝑥 + 𝑒))
1211eqeq1d 2737 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑥(+g𝑔)𝑒) = 𝑥 ↔ (𝑥 + 𝑒) = 𝑥))
1310, 12anbi12d 632 . . . . . . 7 (𝑔 = 𝐺 → (((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥) ↔ ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
144, 13raleqbidv 3325 . . . . . 6 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
155, 14anbi12d 632 . . . . 5 (𝑔 = 𝐺 → ((𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) ↔ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
1615iotabidv 6515 . . . 4 (𝑔 = 𝐺 → (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
17 df-0g 17455 . . . 4 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
18 iotaex 6504 . . . 4 (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) ∈ V
1916, 17, 18fvmpt 6986 . . 3 (𝐺 ∈ V → (0g𝐺) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
20 fvprc 6868 . . . 4 𝐺 ∈ V → (0g𝐺) = ∅)
21 euex 2576 . . . . . 6 (∃!𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → ∃𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
22 n0i 4315 . . . . . . . . 9 (𝑒𝐵 → ¬ 𝐵 = ∅)
23 fvprc 6868 . . . . . . . . . 10 𝐺 ∈ V → (Base‘𝐺) = ∅)
243, 23eqtrid 2782 . . . . . . . . 9 𝐺 ∈ V → 𝐵 = ∅)
2522, 24nsyl2 141 . . . . . . . 8 (𝑒𝐵𝐺 ∈ V)
2625adantr 480 . . . . . . 7 ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → 𝐺 ∈ V)
2726exlimiv 1930 . . . . . 6 (∃𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → 𝐺 ∈ V)
2821, 27syl 17 . . . . 5 (∃!𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → 𝐺 ∈ V)
29 iotanul 6509 . . . . 5 (¬ ∃!𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) = ∅)
3028, 29nsyl5 159 . . . 4 𝐺 ∈ V → (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) = ∅)
3120, 30eqtr4d 2773 . . 3 𝐺 ∈ V → (0g𝐺) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
3219, 31pm2.61i 182 . 2 (0g𝐺) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
331, 32eqtri 2758 1 0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  wcel 2108  ∃!weu 2567  wral 3051  Vcvv 3459  c0 4308  cio 6482  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  0gc0g 17453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-0g 17455
This theorem is referenced by:  grpidpropd  18640  0g0  18642  ismgmid  18643  sgrpidmnd  18717  oppgid  19339  dfur2  20144  oppr0  20309  oppr1  20310  urpropd  33227  opprqus0g  33505
  Copyright terms: Public domain W3C validator