![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fn0g | Structured version Visualization version GIF version |
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
fn0g | ⊢ 0g Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaex 6546 | . 2 ⊢ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥))) ∈ V | |
2 | df-0g 17501 | . 2 ⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | |
3 | 1, 2 | fnmpti 6723 | 1 ⊢ 0g Fn V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ℩cio 6523 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fn 6576 df-0g 17501 |
This theorem is referenced by: prdsidlem 18804 pws0g 18808 prdsinvlem 19089 pws1 20348 dsmmbas2 21780 frlmbas 21798 |
Copyright terms: Public domain | W3C validator |