Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fn0g | Structured version Visualization version GIF version |
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
fn0g | ⊢ 0g Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaex 6398 | . 2 ⊢ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥))) ∈ V | |
2 | df-0g 17069 | . 2 ⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | |
3 | 1, 2 | fnmpti 6560 | 1 ⊢ 0g Fn V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ℩cio 6374 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-0g 17069 |
This theorem is referenced by: prdsidlem 18332 pws0g 18336 prdsinvlem 18599 pws1 19770 dsmmbas2 20854 frlmbas 20872 |
Copyright terms: Public domain | W3C validator |