MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fn0g Structured version   Visualization version   GIF version

Theorem fn0g 18579
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Assertion
Ref Expression
fn0g 0g Fn V

Proof of Theorem fn0g
Dummy variables 𝑒 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 6514 . 2 (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))) ∈ V
2 df-0g 17384 . 2 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
31, 2fnmpti 6691 1 0g Fn V
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  cio 6491   Fn wfn 6536  cfv 6541  (class class class)co 7406  Basecbs 17141  +gcplusg 17194  0gc0g 17382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6493  df-fun 6543  df-fn 6544  df-0g 17384
This theorem is referenced by:  prdsidlem  18654  pws0g  18658  prdsinvlem  18929  pws1  20132  dsmmbas2  21284  frlmbas  21302
  Copyright terms: Public domain W3C validator