| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opreu2reu1 | Structured version Visualization version GIF version | ||
| Description: Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| Ref | Expression |
|---|---|
| opreu2reu1.a | ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜒 ↔ 𝜑)) |
| Ref | Expression |
|---|---|
| opreu2reu1 | ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2reu 32465 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) | |
| 2 | opreu2reu1.a | . . 3 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜒 ↔ 𝜑)) | |
| 3 | 2 | opreu2reurex 6288 | . 2 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜒 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wrex 3061 ∃!wreu 3362 〈cop 4612 × cxp 5657 ∃!w2reu 32464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-iun 4974 df-opab 5187 df-xp 5665 df-rel 5666 df-2reu 32465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |