Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opreu2reu1 Structured version   Visualization version   GIF version

Theorem opreu2reu1 31719
Description: Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023.)
Hypothesis
Ref Expression
opreu2reu1.a (𝑝 = ⟨𝑥, 𝑦⟩ → (𝜒𝜑))
Assertion
Ref Expression
opreu2reu1 (∃!𝑥𝐴 , 𝑦𝐵𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)𝜒)
Distinct variable groups:   𝐴,𝑝,𝑥,𝑦   𝐵,𝑝,𝑥,𝑦   𝜒,𝑥,𝑦   𝜑,𝑝,𝑥,𝑦
Allowed substitution hint:   𝜒(𝑝)

Proof of Theorem opreu2reu1
StepHypRef Expression
1 df-2reu 31714 . 2 (∃!𝑥𝐴 , 𝑦𝐵𝜑 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑))
2 opreu2reu1.a . . 3 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝜒𝜑))
32opreu2reurex 6293 . 2 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜒 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑))
41, 3bitr4i 277 1 (∃!𝑥𝐴 , 𝑦𝐵𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wrex 3070  ∃!wreu 3374  cop 4634   × cxp 5674  ∃!w2reu 31713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-iun 4999  df-opab 5211  df-xp 5682  df-rel 5683  df-2reu 31714
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator