Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opreu2reu1 | Structured version Visualization version GIF version |
Description: Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
Ref | Expression |
---|---|
opreu2reu1.a | ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜒 ↔ 𝜑)) |
Ref | Expression |
---|---|
opreu2reu1 | ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2reu 30876 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) | |
2 | opreu2reu1.a | . . 3 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜒 ↔ 𝜑)) | |
3 | 2 | opreu2reurex 6212 | . 2 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜒 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∃wrex 3071 ∃!wreu 3301 〈cop 4571 × cxp 5598 ∃!w2reu 30875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-iun 4933 df-opab 5144 df-xp 5606 df-rel 5607 df-2reu 30876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |