Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqrtval | Structured version Visualization version GIF version |
Description: Value of square root function. (Contributed by Mario Carneiro, 8-Jul-2013.) |
Ref | Expression |
---|---|
sqrtval | ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2749 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑥↑2) = 𝑦 ↔ (𝑥↑2) = 𝐴)) | |
2 | 1 | 3anbi1d 1442 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑥↑2) = 𝑦 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) |
3 | 2 | riotabidv 7172 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝑦 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) |
4 | df-sqrt 14798 | . 2 ⊢ √ = (𝑦 ∈ ℂ ↦ (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝑦 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) | |
5 | riotaex 7174 | . 2 ⊢ (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6818 | 1 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∉ wnel 3046 class class class wbr 5053 ‘cfv 6380 ℩crio 7169 (class class class)co 7213 ℂcc 10727 0cc0 10729 ici 10731 · cmul 10734 ≤ cle 10868 2c2 11885 ℝ+crp 12586 ↑cexp 13635 ℜcre 14660 √csqrt 14796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-riota 7170 df-sqrt 14798 |
This theorem is referenced by: sqrt0 14805 resqrtcl 14817 resqrtthlem 14818 sqrtneg 14831 sqrtcl 14925 sqrtthlem 14926 |
Copyright terms: Public domain | W3C validator |