Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqrtval | Structured version Visualization version GIF version |
Description: Value of square root function. (Contributed by Mario Carneiro, 8-Jul-2013.) |
Ref | Expression |
---|---|
sqrtval | ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2750 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑥↑2) = 𝑦 ↔ (𝑥↑2) = 𝐴)) | |
2 | 1 | 3anbi1d 1439 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑥↑2) = 𝑦 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) |
3 | 2 | riotabidv 7234 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝑦 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) |
4 | df-sqrt 14946 | . 2 ⊢ √ = (𝑦 ∈ ℂ ↦ (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝑦 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) | |
5 | riotaex 7236 | . 2 ⊢ (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6875 | 1 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∉ wnel 3049 class class class wbr 5074 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 ℂcc 10869 0cc0 10871 ici 10873 · cmul 10876 ≤ cle 11010 2c2 12028 ℝ+crp 12730 ↑cexp 13782 ℜcre 14808 √csqrt 14944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-sqrt 14946 |
This theorem is referenced by: sqrt0 14953 resqrtcl 14965 resqrtthlem 14966 sqrtneg 14979 sqrtcl 15073 sqrtthlem 15074 |
Copyright terms: Public domain | W3C validator |