![]() |
Metamath
Proof Explorer Theorem List (p. 153 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30942) |
![]() (30943-32465) |
![]() (32466-48888) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cj0 15201 | The conjugate of zero. (Contributed by NM, 27-Jul-1999.) |
⊢ (∗‘0) = 0 | ||
Theorem | cji 15202 | The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.) |
⊢ (∗‘i) = -i | ||
Theorem | cjreim 15203 | The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵))) | ||
Theorem | cjreim2 15204 | The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 − (i · 𝐵))) = (𝐴 + (i · 𝐵))) | ||
Theorem | cj11 15205 | Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Eric Schmidt, 2-Jul-2009.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) = (∗‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | cjne0 15206 | A number is nonzero iff its complex conjugate is nonzero. (Contributed by NM, 29-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0)) | ||
Theorem | cjdiv 15207 | Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
Theorem | cnrecnv 15208* | The inverse to the canonical bijection from (ℝ × ℝ) to ℂ from cnref1o 13044. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ⇒ ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | ||
Theorem | sqeqd 15209 | A deduction for showing two numbers whose squares are equal are themselves equal. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) & ⊢ ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | recli 15210 | The real part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘𝐴) ∈ ℝ | ||
Theorem | imcli 15211 | The imaginary part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘𝐴) ∈ ℝ | ||
Theorem | cjcli 15212 | Closure law for complex conjugate. (Contributed by NM, 11-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘𝐴) ∈ ℂ | ||
Theorem | replimi 15213 | Construct a complex number from its real and imaginary parts. (Contributed by NM, 1-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) | ||
Theorem | cjcji 15214 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 11-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘(∗‘𝐴)) = 𝐴 | ||
Theorem | reim0bi 15215 | A number is real iff its imaginary part is 0. (Contributed by NM, 29-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0) | ||
Theorem | rerebi 15216 | A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 27-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴) | ||
Theorem | cjrebi 15217 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴) | ||
Theorem | recji 15218 | Real part of a complex conjugate. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴) | ||
Theorem | imcji 15219 | Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴) | ||
Theorem | cjmulrcli 15220 | A complex number times its conjugate is real. (Contributed by NM, 11-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · (∗‘𝐴)) ∈ ℝ | ||
Theorem | cjmulvali 15221 | A complex number times its conjugate. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) | ||
Theorem | cjmulge0i 15222 | A complex number times its conjugate is nonnegative. (Contributed by NM, 28-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ 0 ≤ (𝐴 · (∗‘𝐴)) | ||
Theorem | renegi 15223 | Real part of negative. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘-𝐴) = -(ℜ‘𝐴) | ||
Theorem | imnegi 15224 | Imaginary part of negative. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘-𝐴) = -(ℑ‘𝐴) | ||
Theorem | cjnegi 15225 | Complex conjugate of negative. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘-𝐴) = -(∗‘𝐴) | ||
Theorem | addcji 15226 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴)) | ||
Theorem | readdi 15227 | Real part distributes over addition. (Contributed by NM, 28-Jul-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)) | ||
Theorem | imaddi 15228 | Imaginary part distributes over addition. (Contributed by NM, 28-Jul-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)) | ||
Theorem | remuli 15229 | Real part of a product. (Contributed by NM, 28-Jul-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) | ||
Theorem | immuli 15230 | Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) | ||
Theorem | cjaddi 15231 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)) | ||
Theorem | cjmuli 15232 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)) | ||
Theorem | ipcni 15233 | Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))) | ||
Theorem | cjdivi 15234 | Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
Theorem | crrei 15235 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴 | ||
Theorem | crimi 15236 | The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵 | ||
Theorem | recld 15237 | The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) | ||
Theorem | imcld 15238 | The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) | ||
Theorem | cjcld 15239 | Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘𝐴) ∈ ℂ) | ||
Theorem | replimd 15240 | Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | ||
Theorem | remimd 15241 | Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | ||
Theorem | cjcjd 15242 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(∗‘𝐴)) = 𝐴) | ||
Theorem | reim0bd 15243 | A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (ℑ‘𝐴) = 0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | rerebd 15244 | A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (ℜ‘𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | cjrebd 15245 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (∗‘𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | cjne0d 15246 | A number is nonzero iff its complex conjugate is nonzero. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (∗‘𝐴) ≠ 0) | ||
Theorem | recjd 15247 | Real part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | ||
Theorem | imcjd 15248 | Imaginary part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | ||
Theorem | cjmulrcld 15249 | A complex number times its conjugate is real. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (∗‘𝐴)) ∈ ℝ) | ||
Theorem | cjmulvald 15250 | A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
Theorem | cjmulge0d 15251 | A complex number times its conjugate is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · (∗‘𝐴))) | ||
Theorem | renegd 15252 | Real part of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | ||
Theorem | imnegd 15253 | Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘-𝐴) = -(ℑ‘𝐴)) | ||
Theorem | cjnegd 15254 | Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘-𝐴) = -(∗‘𝐴)) | ||
Theorem | addcjd 15255 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | ||
Theorem | cjexpd 15256 | Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | ||
Theorem | readdd 15257 | Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | ||
Theorem | imaddd 15258 | Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | ||
Theorem | resubd 15259 | Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | ||
Theorem | imsubd 15260 | Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) | ||
Theorem | remuld 15261 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
Theorem | immuld 15262 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | ||
Theorem | cjaddd 15263 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | ||
Theorem | cjmuld 15264 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | ||
Theorem | ipcnd 15265 | Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
Theorem | cjdivd 15266 | Complex conjugate distributes over division. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
Theorem | rered 15267 | A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) = 𝐴) | ||
Theorem | reim0d 15268 | The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘𝐴) = 0) | ||
Theorem | cjred 15269 | A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (∗‘𝐴) = 𝐴) | ||
Theorem | remul2d 15270 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) | ||
Theorem | immul2d 15271 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) | ||
Theorem | redivd 15272 | Real part of a division. Related to remul2 15173. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (ℜ‘(𝐵 / 𝐴)) = ((ℜ‘𝐵) / 𝐴)) | ||
Theorem | imdivd 15273 | Imaginary part of a division. Related to remul2 15173. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴)) | ||
Theorem | crred 15274 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴) | ||
Theorem | crimd 15275 | The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵) | ||
Syntax | csqrt 15276 | Extend class notation to include square root of a complex number. |
class √ | ||
Syntax | cabs 15277 | Extend class notation to include a function for the absolute value (modulus) of a complex number. |
class abs | ||
Definition | df-sqrt 15278* |
Define a function whose value is the square root of a complex number.
For example, (√‘25) = 5 (ex-sqrt 30478).
Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30478. The square root symbol was introduced in 1525 by Christoff Rudolff. See sqrtcl 15404 for its closure, sqrtval 15280 for its value, sqrtth 15407 and sqsqrti 15418 for its relationship to squares, and sqrt11i 15427 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.) |
⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) | ||
Definition | df-abs 15279 | Define the function for the absolute value (modulus) of a complex number. See abscli 15438 for its closure and absval 15281 or absval2i 15440 for its value. For example, (abs‘-2) = 2 (ex-abs 30479). (Contributed by NM, 27-Jul-1999.) |
⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | ||
Theorem | sqrtval 15280* | Value of square root function. (Contributed by Mario Carneiro, 8-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → (√‘𝐴) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) | ||
Theorem | absval 15281 | The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | ||
Theorem | rennim 15282 | A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.) |
⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) | ||
Theorem | cnpart 15283 | The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map 𝑥 ↦ -𝑥). (Contributed by Mario Carneiro, 8-Jul-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+))) | ||
Theorem | sqrt0 15284 | The square root of zero is zero. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ (√‘0) = 0 | ||
Theorem | 01sqrexlem1 15285* | Lemma for 01sqrex 15292. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) | ||
Theorem | 01sqrexlem2 15286* | Lemma for 01sqrex 15292. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) | ||
Theorem | 01sqrexlem3 15287* | Lemma for 01sqrex 15292. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧)) | ||
Theorem | 01sqrexlem4 15288* | Lemma for 01sqrex 15292. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) | ||
Theorem | 01sqrexlem5 15289* | Lemma for 01sqrex 15292. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) & ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < ))) | ||
Theorem | 01sqrexlem6 15290* | Lemma for 01sqrex 15292. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) & ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴) | ||
Theorem | 01sqrexlem7 15291* | Lemma for 01sqrex 15292. (Contributed by Mario Carneiro, 10-Jul-2013.) (Proof shortened by AV, 9-Jul-2022.) |
⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) & ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) = 𝐴) | ||
Theorem | 01sqrex 15292* | Existence of a square root for reals in the interval (0, 1]. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) | ||
Theorem | resqrex 15293* | Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) | ||
Theorem | sqrmo 15294* | Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.) |
⊢ (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | ||
Theorem | resqreu 15295* | Existence and uniqueness for the real square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | ||
Theorem | resqrtcl 15296 | Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | ||
Theorem | resqrtthlem 15297 | Lemma for resqrtth 15298. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)) | ||
Theorem | resqrtth 15298 | Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | ||
Theorem | remsqsqrt 15299 | Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
Theorem | sqrtge0 15300 | The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |