| Metamath
Proof Explorer Theorem List (p. 153 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30853) |
(30854-32376) |
(32377-49784) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | redivd 15201 | Real part of a division. Related to remul2 15102. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (ℜ‘(𝐵 / 𝐴)) = ((ℜ‘𝐵) / 𝐴)) | ||
| Theorem | imdivd 15202 | Imaginary part of a division. Related to remul2 15102. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴)) | ||
| Theorem | crred 15203 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴) | ||
| Theorem | crimd 15204 | The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵) | ||
| Syntax | csqrt 15205 | Extend class notation to include square root of a complex number. |
| class √ | ||
| Syntax | cabs 15206 | Extend class notation to include a function for the absolute value (modulus) of a complex number. |
| class abs | ||
| Definition | df-sqrt 15207* |
Define a function whose value is the square root of a complex number.
For example, (√‘25) = 5 (ex-sqrt 30389).
Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30389. The square root symbol was introduced in 1525 by Christoff Rudolff. See sqrtcl 15334 for its closure, sqrtval 15209 for its value, sqrtth 15337 and sqsqrti 15348 for its relationship to squares, and sqrt11i 15357 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.) |
| ⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) | ||
| Definition | df-abs 15208 | Define the function for the absolute value (modulus) of a complex number. See abscli 15368 for its closure and absval 15210 or absval2i 15370 for its value. For example, (abs‘-2) = 2 (ex-abs 30390). (Contributed by NM, 27-Jul-1999.) |
| ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | ||
| Theorem | sqrtval 15209* | Value of square root function. (Contributed by Mario Carneiro, 8-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) | ||
| Theorem | absval 15210 | The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | ||
| Theorem | rennim 15211 | A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.) |
| ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) | ||
| Theorem | cnpart 15212 | The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map 𝑥 ↦ -𝑥). (Contributed by Mario Carneiro, 8-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+))) | ||
| Theorem | sqrt0 15213 | The square root of zero is zero. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ (√‘0) = 0 | ||
| Theorem | 01sqrexlem1 15214* | Lemma for 01sqrex 15221. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) | ||
| Theorem | 01sqrexlem2 15215* | Lemma for 01sqrex 15221. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) | ||
| Theorem | 01sqrexlem3 15216* | Lemma for 01sqrex 15221. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧)) | ||
| Theorem | 01sqrexlem4 15217* | Lemma for 01sqrex 15221. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) | ||
| Theorem | 01sqrexlem5 15218* | Lemma for 01sqrex 15221. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) & ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < ))) | ||
| Theorem | 01sqrexlem6 15219* | Lemma for 01sqrex 15221. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) & ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴) | ||
| Theorem | 01sqrexlem7 15220* | Lemma for 01sqrex 15221. (Contributed by Mario Carneiro, 10-Jul-2013.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) & ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) = 𝐴) | ||
| Theorem | 01sqrex 15221* | Existence of a square root for reals in the interval (0, 1]. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) | ||
| Theorem | resqrex 15222* | Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) | ||
| Theorem | sqrmo 15223* | Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.) |
| ⊢ (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | ||
| Theorem | resqreu 15224* | Existence and uniqueness for the real square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | ||
| Theorem | resqrtcl 15225 | Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | ||
| Theorem | resqrtthlem 15226 | Lemma for resqrtth 15227. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)) | ||
| Theorem | resqrtth 15227 | Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | ||
| Theorem | remsqsqrt 15228 | Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
| Theorem | sqrtge0 15229 | The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴)) | ||
| Theorem | sqrtgt0 15230 | The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (√‘𝐴)) | ||
| Theorem | sqrtmul 15231 | Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) | ||
| Theorem | sqrtle 15232 | Square root is monotonic. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) | ||
| Theorem | sqrtlt 15233 | Square root is strictly monotonic. Closed form of sqrtlti 15362. (Contributed by Scott Fenton, 17-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) | ||
| Theorem | sqrt11 15234 | The square root function is one-to-one. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | sqrt00 15235 | A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | rpsqrtcl 15236 | The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008.) |
| ⊢ (𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ+) | ||
| Theorem | sqrtdiv 15237 | Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) | ||
| Theorem | sqrtneglem 15238 | The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+)) | ||
| Theorem | sqrtneg 15239 | The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘-𝐴) = (i · (√‘𝐴))) | ||
| Theorem | sqrtsq2 15240 | Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵↑2))) | ||
| Theorem | sqrtsq 15241 | Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴) | ||
| Theorem | sqrtmsq 15242 | Square root of square. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · 𝐴)) = 𝐴) | ||
| Theorem | sqrt1 15243 | The square root of 1 is 1. (Contributed by NM, 31-Jul-1999.) |
| ⊢ (√‘1) = 1 | ||
| Theorem | sqrt4 15244 | The square root of 4 is 2. (Contributed by NM, 3-Aug-1999.) |
| ⊢ (√‘4) = 2 | ||
| Theorem | sqrt9 15245 | The square root of 9 is 3. (Contributed by NM, 11-May-2004.) |
| ⊢ (√‘9) = 3 | ||
| Theorem | sqrt2gt1lt2 15246 | The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ (1 < (√‘2) ∧ (√‘2) < 2) | ||
| Theorem | sqrtm1 15247 | The imaginary unit is the square root of negative 1. A lot of people like to call this the "definition" of i, but the definition of √ df-sqrt 15207 has already been crafted with i being mentioned explicitly, and in any case it doesn't make too much sense to define a value based on a function evaluated outside its domain. A more appropriate view is to take ax-i2m1 11142 or i2 14173 as the "definition", and simply postulate the existence of a number satisfying this property. This is the approach we take here. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ i = (√‘-1) | ||
| Theorem | nn0sqeq1 15248 | A natural number with square one is equal to one. (Contributed by Thierry Arnoux, 2-Feb-2020.) (Proof shortened by Thierry Arnoux, 6-Jun-2023.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → 𝑁 = 1) | ||
| Theorem | absneg 15249 | Absolute value of the negative. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | ||
| Theorem | abscl 15250 | Real closure of absolute value. (Contributed by NM, 3-Oct-1999.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | ||
| Theorem | abscj 15251 | The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴)) | ||
| Theorem | absvalsq 15252 | Square of value of absolute value function. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) | ||
| Theorem | absvalsq2 15253 | Square of value of absolute value function. (Contributed by NM, 1-Feb-2007.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
| Theorem | sqabsadd 15254 | Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) | ||
| Theorem | sqabssub 15255 | Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) | ||
| Theorem | absval2 15256 | Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 17-Mar-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))) | ||
| Theorem | abs0 15257 | The absolute value of 0. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (abs‘0) = 0 | ||
| Theorem | absi 15258 | The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005.) |
| ⊢ (abs‘i) = 1 | ||
| Theorem | absge0 15259 | Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | ||
| Theorem | absrpcl 15260 | The absolute value of a nonzero number is a positive real. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+) | ||
| Theorem | abs00 15261 | The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 26-Sep-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | abs00ad 15262 | A complex number is zero iff its absolute value is zero. Deduction form of abs00 15261. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | abs00bd 15263 | If a complex number is zero, its absolute value is zero. Converse of abs00d 15421. One-way deduction form of abs00 15261. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 = 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) = 0) | ||
| Theorem | absreimsq 15264 | Square of the absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 1-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2))) | ||
| Theorem | absreim 15265 | Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 + (i · 𝐵))) = (√‘((𝐴↑2) + (𝐵↑2)))) | ||
| Theorem | absmul 15266 | Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) | ||
| Theorem | absdiv 15267 | Absolute value distributes over division. (Contributed by NM, 27-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) | ||
| Theorem | absid 15268 | A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | ||
| Theorem | abs1 15269 | The absolute value of one is one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| ⊢ (abs‘1) = 1 | ||
| Theorem | absnid 15270 | For a negative number, its absolute value is its negation. (Contributed by NM, 27-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | ||
| Theorem | leabs 15271 | A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | ||
| Theorem | absor 15272 | The absolute value of a real number is either that number or its negative. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) | ||
| Theorem | absre 15273 | Absolute value of a real number. (Contributed by NM, 17-Mar-2005.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = (√‘(𝐴↑2))) | ||
| Theorem | absresq 15274 | Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2)) | ||
| Theorem | absmod0 15275 | 𝐴 is divisible by 𝐵 iff its absolute value is. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ ((abs‘𝐴) mod 𝐵) = 0)) | ||
| Theorem | absexp 15276 | Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | ||
| Theorem | absexpz 15277 | Absolute value of integer exponentiation. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | ||
| Theorem | abssq 15278 | Square can be moved in and out of absolute value. (Contributed by Scott Fenton, 18-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (abs‘(𝐴↑2))) | ||
| Theorem | sqabs 15279 | The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) | ||
| Theorem | absrele 15280 | The absolute value of a complex number is greater than or equal to the absolute value of its real part. (Contributed by NM, 1-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(ℜ‘𝐴)) ≤ (abs‘𝐴)) | ||
| Theorem | absimle 15281 | The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴)) | ||
| Theorem | max0add 15282 | The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Mario Carneiro, 24-Aug-2014.) |
| ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴)) | ||
| Theorem | absz 15283 | A real number is an integer iff its absolute value is an integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (abs‘𝐴) ∈ ℤ)) | ||
| Theorem | nn0abscl 15284 | The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | ||
| Theorem | zabscl 15285 | The absolute value of an integer is an integer. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ) | ||
| Theorem | zabs0b 15286 | An integer has an absolute value less than 1 iff it is 0. (Contributed by AV, 21-Nov-2025.) |
| ⊢ (𝑋 ∈ ℤ → ((abs‘𝑋) < 1 ↔ 𝑋 = 0)) | ||
| Theorem | abslt 15287 | Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) | ||
| Theorem | absle 15288 | Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | ||
| Theorem | abssubne0 15289 | If the absolute value of a complex number is less than a real, its difference from the real is nonzero. (Contributed by NM, 2-Nov-2007.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵 − 𝐴) ≠ 0) | ||
| Theorem | absdiflt 15290 | The absolute value of a difference and 'less than' relation. (Contributed by Paul Chapman, 18-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) | ||
| Theorem | absdifle 15291 | The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) | ||
| Theorem | elicc4abs 15292 | Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ((𝐴 − 𝐵)[,](𝐴 + 𝐵)) ↔ (abs‘(𝐶 − 𝐴)) ≤ 𝐵)) | ||
| Theorem | lenegsq 15293 | Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴 ≤ 𝐵 ∧ -𝐴 ≤ 𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
| Theorem | releabs 15294 | The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 1-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴)) | ||
| Theorem | recval 15295 | Reciprocal expressed with a real denominator. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2))) | ||
| Theorem | absidm 15296 | The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴)) | ||
| Theorem | absgt0 15297 | The absolute value of a nonzero number is positive. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴))) | ||
| Theorem | nnabscl 15298 | The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) | ||
| Theorem | abssub 15299 | Swapping order of subtraction doesn't change the absolute value. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) | ||
| Theorem | abssubge0 15300 | Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |