| Metamath
Proof Explorer Theorem List (p. 153 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | abs1 15201 | The absolute value of one is one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| ⊢ (abs‘1) = 1 | ||
| Theorem | absnid 15202 | For a negative number, its absolute value is its negation. (Contributed by NM, 27-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | ||
| Theorem | leabs 15203 | A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | ||
| Theorem | absor 15204 | The absolute value of a real number is either that number or its negative. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) | ||
| Theorem | absre 15205 | Absolute value of a real number. (Contributed by NM, 17-Mar-2005.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = (√‘(𝐴↑2))) | ||
| Theorem | absresq 15206 | Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2)) | ||
| Theorem | absmod0 15207 | 𝐴 is divisible by 𝐵 iff its absolute value is. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ ((abs‘𝐴) mod 𝐵) = 0)) | ||
| Theorem | absexp 15208 | Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | ||
| Theorem | absexpz 15209 | Absolute value of integer exponentiation. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | ||
| Theorem | abssq 15210 | Square can be moved in and out of absolute value. (Contributed by Scott Fenton, 18-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (abs‘(𝐴↑2))) | ||
| Theorem | sqabs 15211 | The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) | ||
| Theorem | absrele 15212 | The absolute value of a complex number is greater than or equal to the absolute value of its real part. (Contributed by NM, 1-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(ℜ‘𝐴)) ≤ (abs‘𝐴)) | ||
| Theorem | absimle 15213 | The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴)) | ||
| Theorem | max0add 15214 | The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Mario Carneiro, 24-Aug-2014.) |
| ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴)) | ||
| Theorem | absz 15215 | A real number is an integer iff its absolute value is an integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (abs‘𝐴) ∈ ℤ)) | ||
| Theorem | nn0abscl 15216 | The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | ||
| Theorem | zabscl 15217 | The absolute value of an integer is an integer. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ) | ||
| Theorem | zabs0b 15218 | An integer has an absolute value less than 1 iff it is 0. (Contributed by AV, 21-Nov-2025.) |
| ⊢ (𝑋 ∈ ℤ → ((abs‘𝑋) < 1 ↔ 𝑋 = 0)) | ||
| Theorem | abslt 15219 | Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) | ||
| Theorem | absle 15220 | Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | ||
| Theorem | abssubne0 15221 | If the absolute value of a complex number is less than a real, its difference from the real is nonzero. (Contributed by NM, 2-Nov-2007.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵 − 𝐴) ≠ 0) | ||
| Theorem | absdiflt 15222 | The absolute value of a difference and 'less than' relation. (Contributed by Paul Chapman, 18-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) | ||
| Theorem | absdifle 15223 | The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) | ||
| Theorem | elicc4abs 15224 | Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ((𝐴 − 𝐵)[,](𝐴 + 𝐵)) ↔ (abs‘(𝐶 − 𝐴)) ≤ 𝐵)) | ||
| Theorem | lenegsq 15225 | Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴 ≤ 𝐵 ∧ -𝐴 ≤ 𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
| Theorem | releabs 15226 | The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 1-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴)) | ||
| Theorem | recval 15227 | Reciprocal expressed with a real denominator. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2))) | ||
| Theorem | absidm 15228 | The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴)) | ||
| Theorem | absgt0 15229 | The absolute value of a nonzero number is positive. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴))) | ||
| Theorem | nnabscl 15230 | The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) | ||
| Theorem | abssub 15231 | Swapping order of subtraction doesn't change the absolute value. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) | ||
| Theorem | abssubge0 15232 | Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) | ||
| Theorem | abssuble0 15233 | Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | absmax 15234 | The maximum of two numbers using absolute value. (Contributed by NM, 7-Aug-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) | ||
| Theorem | abstri 15235 | Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) | ||
| Theorem | abs3dif 15236 | Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵)))) | ||
| Theorem | abs2dif 15237 | Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) | ||
| Theorem | abs2dif2 15238 | Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) | ||
| Theorem | abs2difabs 15239 | Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) | ||
| Theorem | abs1m 15240* | For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴))) | ||
| Theorem | recan 15241* | Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵)) | ||
| Theorem | absf 15242 | Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ abs:ℂ⟶ℝ | ||
| Theorem | abs3lem 15243 | Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷)) | ||
| Theorem | abslem2 15244 | Lemma involving absolute values. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴))) | ||
| Theorem | rddif 15245 | The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2)) | ||
| Theorem | absrdbnd 15246 | Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1)) | ||
| Theorem | fzomaxdiflem 15247 | Lemma for fzomaxdif 15248. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐵 − 𝐴)) ∈ (0..^(𝐷 − 𝐶))) | ||
| Theorem | fzomaxdif 15248 | A bound on the separation of two points in a half-open range. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶))) | ||
| Theorem | uzin2 15249 | The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
| ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) | ||
| Theorem | rexanuz 15250* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.) |
| ⊢ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
| Theorem | rexanre 15251* | Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.) |
| ⊢ (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)))) | ||
| Theorem | rexfiuz 15252* | Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.) |
| ⊢ (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
| Theorem | rexuz3 15253* | Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
| Theorem | rexanuz2 15254* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
| Theorem | r19.29uz 15255* | A version of 19.29 1874 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) | ||
| Theorem | r19.2uz 15256* | A version of r19.2z 4445 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑) | ||
| Theorem | rexuzre 15257* | Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑗 ≤ 𝑘 → 𝜑))) | ||
| Theorem | rexico 15258* | Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) | ||
| Theorem | cau3lem 15259* | Lemma for cau3 15260. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.) |
| ⊢ 𝑍 ⊆ ℤ & ⊢ (𝜏 → 𝜓) & ⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → (𝜓 ↔ 𝜒)) & ⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) = (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗)))) & ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃) ∧ (𝜒 ∧ 𝑥 ∈ ℝ)) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) | ||
| Theorem | cau3 15260* | Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 15250 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) | ||
| Theorem | cau4 15261* | Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) ⇒ ⊢ (𝑁 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑊 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | ||
| Theorem | caubnd2 15262* | A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) | ||
| Theorem | caubnd 15263* | A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 14-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦) | ||
| Theorem | sqreulem 15264 | Lemma for sqreu 15265: write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ 𝐵 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝐵) ∧ (i · 𝐵) ∉ ℝ+)) | ||
| Theorem | sqreu 15265* | Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | ||
| Theorem | sqrtcl 15266 | Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ) | ||
| Theorem | sqrtthlem 15267 | Lemma for sqrtth 15269. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)) | ||
| Theorem | sqrtf 15268 | Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ √:ℂ⟶ℂ | ||
| Theorem | sqrtth 15269 | Square root theorem over the complex numbers. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴) | ||
| Theorem | sqrtrege0 15270 | The square root function must make a choice between the two roots, which differ by a sign change. In the general complex case, the choice of "positive" and "negative" is not so clear. The convention we use is to take the root with positive real part, unless 𝐴 is a nonpositive real (in which case both roots have 0 real part); in this case we take the one in the positive imaginary direction. Another way to look at this is that we choose the root that is largest with respect to lexicographic order on the complex numbers (sorting by real part first, then by imaginary part as tie-breaker). (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴))) | ||
| Theorem | eqsqrtor 15271 | Solve an equation containing a square. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = 𝐵 ↔ (𝐴 = (√‘𝐵) ∨ 𝐴 = -(√‘𝐵)))) | ||
| Theorem | eqsqrtd 15272 | A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 𝐵) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) & ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐴 = (√‘𝐵)) | ||
| Theorem | eqsqrt2d 15273 | A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 𝐵) & ⊢ (𝜑 → 0 < (ℜ‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 = (√‘𝐵)) | ||
| Theorem | amgm2 15274 | Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by Mario Carneiro, 2-Jul-2014.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)) | ||
| Theorem | sqrtthi 15275 | Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
| Theorem | sqrtcli 15276 | The square root of a nonnegative real is a real. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘𝐴) ∈ ℝ) | ||
| Theorem | sqrtgt0i 15277 | The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 < 𝐴 → 0 < (√‘𝐴)) | ||
| Theorem | sqrtmsqi 15278 | Square root of square. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴 · 𝐴)) = 𝐴) | ||
| Theorem | sqrtsqi 15279 | Square root of square. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴↑2)) = 𝐴) | ||
| Theorem | sqsqrti 15280 | Square of square root. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴)↑2) = 𝐴) | ||
| Theorem | sqrtge0i 15281 | The square root of a nonnegative real is nonnegative. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → 0 ≤ (√‘𝐴)) | ||
| Theorem | absidi 15282 | A nonnegative number is its own absolute value. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴) | ||
| Theorem | absnidi 15283 | A negative number is the negative of its own absolute value. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴 ≤ 0 → (abs‘𝐴) = -𝐴) | ||
| Theorem | leabsi 15284 | A real number is less than or equal to its absolute value. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ≤ (abs‘𝐴) | ||
| Theorem | absori 15285 | The absolute value of a real number is either that number or its negative. (Contributed by NM, 30-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) | ||
| Theorem | absrei 15286 | Absolute value of a real number. (Contributed by NM, 3-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (abs‘𝐴) = (√‘(𝐴↑2)) | ||
| Theorem | sqrtpclii 15287 | The square root of a positive real is a real. (Contributed by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ (√‘𝐴) ∈ ℝ | ||
| Theorem | sqrtgt0ii 15288 | The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 0 < (√‘𝐴) | ||
| Theorem | sqrt11i 15289 | The square root function is one-to-one. (Contributed by NM, 27-Jul-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | sqrtmuli 15290 | Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) | ||
| Theorem | sqrtmulii 15291 | Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 ≤ 𝐴 & ⊢ 0 ≤ 𝐵 ⇒ ⊢ (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)) | ||
| Theorem | sqrtmsq2i 15292 | Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐵))) | ||
| Theorem | sqrtlei 15293 | Square root is monotonic. (Contributed by NM, 3-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) | ||
| Theorem | sqrtlti 15294 | Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) | ||
| Theorem | abslti 15295 | Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵)) | ||
| Theorem | abslei 15296 | Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) | ||
| Theorem | cnsqrt00 15297 | A square root of a complex number is zero iff its argument is 0. Version of sqrt00 15167 for complex numbers. (Contributed by AV, 26-Jan-2023.) |
| ⊢ (𝐴 ∈ ℂ → ((√‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | absvalsqi 15298 | Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)) | ||
| Theorem | absvalsq2i 15299 | Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) | ||
| Theorem | abscli 15300 | Real closure of absolute value. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (abs‘𝐴) ∈ ℝ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |