| Metamath
Proof Explorer Theorem List (p. 153 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nn0sqeq1 15201 | A natural number with square one is equal to one. (Contributed by Thierry Arnoux, 2-Feb-2020.) (Proof shortened by Thierry Arnoux, 6-Jun-2023.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → 𝑁 = 1) | ||
| Theorem | absneg 15202 | Absolute value of the negative. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | ||
| Theorem | abscl 15203 | Real closure of absolute value. (Contributed by NM, 3-Oct-1999.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | ||
| Theorem | abscj 15204 | The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴)) | ||
| Theorem | absvalsq 15205 | Square of value of absolute value function. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) | ||
| Theorem | absvalsq2 15206 | Square of value of absolute value function. (Contributed by NM, 1-Feb-2007.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
| Theorem | sqabsadd 15207 | Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) | ||
| Theorem | sqabssub 15208 | Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) | ||
| Theorem | absval2 15209 | Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 17-Mar-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))) | ||
| Theorem | abs0 15210 | The absolute value of 0. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (abs‘0) = 0 | ||
| Theorem | absi 15211 | The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005.) |
| ⊢ (abs‘i) = 1 | ||
| Theorem | absge0 15212 | Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | ||
| Theorem | absrpcl 15213 | The absolute value of a nonzero number is a positive real. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+) | ||
| Theorem | abs00 15214 | The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 26-Sep-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | abs00ad 15215 | A complex number is zero iff its absolute value is zero. Deduction form of abs00 15214. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | abs00bd 15216 | If a complex number is zero, its absolute value is zero. Converse of abs00d 15374. One-way deduction form of abs00 15214. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 = 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) = 0) | ||
| Theorem | absreimsq 15217 | Square of the absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 1-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2))) | ||
| Theorem | absreim 15218 | Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 + (i · 𝐵))) = (√‘((𝐴↑2) + (𝐵↑2)))) | ||
| Theorem | absmul 15219 | Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) | ||
| Theorem | absdiv 15220 | Absolute value distributes over division. (Contributed by NM, 27-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) | ||
| Theorem | absid 15221 | A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | ||
| Theorem | abs1 15222 | The absolute value of one is one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| ⊢ (abs‘1) = 1 | ||
| Theorem | absnid 15223 | For a negative number, its absolute value is its negation. (Contributed by NM, 27-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | ||
| Theorem | leabs 15224 | A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | ||
| Theorem | absor 15225 | The absolute value of a real number is either that number or its negative. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) | ||
| Theorem | absre 15226 | Absolute value of a real number. (Contributed by NM, 17-Mar-2005.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = (√‘(𝐴↑2))) | ||
| Theorem | absresq 15227 | Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2)) | ||
| Theorem | absmod0 15228 | 𝐴 is divisible by 𝐵 iff its absolute value is. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ ((abs‘𝐴) mod 𝐵) = 0)) | ||
| Theorem | absexp 15229 | Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | ||
| Theorem | absexpz 15230 | Absolute value of integer exponentiation. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | ||
| Theorem | abssq 15231 | Square can be moved in and out of absolute value. (Contributed by Scott Fenton, 18-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (abs‘(𝐴↑2))) | ||
| Theorem | sqabs 15232 | The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) | ||
| Theorem | absrele 15233 | The absolute value of a complex number is greater than or equal to the absolute value of its real part. (Contributed by NM, 1-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(ℜ‘𝐴)) ≤ (abs‘𝐴)) | ||
| Theorem | absimle 15234 | The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴)) | ||
| Theorem | max0add 15235 | The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Mario Carneiro, 24-Aug-2014.) |
| ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴)) | ||
| Theorem | absz 15236 | A real number is an integer iff its absolute value is an integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (abs‘𝐴) ∈ ℤ)) | ||
| Theorem | nn0abscl 15237 | The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | ||
| Theorem | zabscl 15238 | The absolute value of an integer is an integer. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ) | ||
| Theorem | zabs0b 15239 | An integer has an absolute value less than 1 iff it is 0. (Contributed by AV, 21-Nov-2025.) |
| ⊢ (𝑋 ∈ ℤ → ((abs‘𝑋) < 1 ↔ 𝑋 = 0)) | ||
| Theorem | abslt 15240 | Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) | ||
| Theorem | absle 15241 | Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | ||
| Theorem | abssubne0 15242 | If the absolute value of a complex number is less than a real, its difference from the real is nonzero. (Contributed by NM, 2-Nov-2007.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵 − 𝐴) ≠ 0) | ||
| Theorem | absdiflt 15243 | The absolute value of a difference and 'less than' relation. (Contributed by Paul Chapman, 18-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) | ||
| Theorem | absdifle 15244 | The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) | ||
| Theorem | elicc4abs 15245 | Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ((𝐴 − 𝐵)[,](𝐴 + 𝐵)) ↔ (abs‘(𝐶 − 𝐴)) ≤ 𝐵)) | ||
| Theorem | lenegsq 15246 | Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴 ≤ 𝐵 ∧ -𝐴 ≤ 𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
| Theorem | releabs 15247 | The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 1-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴)) | ||
| Theorem | recval 15248 | Reciprocal expressed with a real denominator. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2))) | ||
| Theorem | absidm 15249 | The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴)) | ||
| Theorem | absgt0 15250 | The absolute value of a nonzero number is positive. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴))) | ||
| Theorem | nnabscl 15251 | The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) | ||
| Theorem | abssub 15252 | Swapping order of subtraction doesn't change the absolute value. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) | ||
| Theorem | abssubge0 15253 | Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) | ||
| Theorem | abssuble0 15254 | Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | absmax 15255 | The maximum of two numbers using absolute value. (Contributed by NM, 7-Aug-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) | ||
| Theorem | abstri 15256 | Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) | ||
| Theorem | abs3dif 15257 | Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵)))) | ||
| Theorem | abs2dif 15258 | Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) | ||
| Theorem | abs2dif2 15259 | Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) | ||
| Theorem | abs2difabs 15260 | Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) | ||
| Theorem | abs1m 15261* | For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴))) | ||
| Theorem | recan 15262* | Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵)) | ||
| Theorem | absf 15263 | Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ abs:ℂ⟶ℝ | ||
| Theorem | abs3lem 15264 | Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷)) | ||
| Theorem | abslem2 15265 | Lemma involving absolute values. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴))) | ||
| Theorem | rddif 15266 | The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2)) | ||
| Theorem | absrdbnd 15267 | Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1)) | ||
| Theorem | fzomaxdiflem 15268 | Lemma for fzomaxdif 15269. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐵 − 𝐴)) ∈ (0..^(𝐷 − 𝐶))) | ||
| Theorem | fzomaxdif 15269 | A bound on the separation of two points in a half-open range. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶))) | ||
| Theorem | uzin2 15270 | The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
| ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) | ||
| Theorem | rexanuz 15271* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.) |
| ⊢ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
| Theorem | rexanre 15272* | Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.) |
| ⊢ (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)))) | ||
| Theorem | rexfiuz 15273* | Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.) |
| ⊢ (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
| Theorem | rexuz3 15274* | Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
| Theorem | rexanuz2 15275* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
| Theorem | r19.29uz 15276* | A version of 19.29 1873 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) | ||
| Theorem | r19.2uz 15277* | A version of r19.2z 4448 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑) | ||
| Theorem | rexuzre 15278* | Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑗 ≤ 𝑘 → 𝜑))) | ||
| Theorem | rexico 15279* | Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) | ||
| Theorem | cau3lem 15280* | Lemma for cau3 15281. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.) |
| ⊢ 𝑍 ⊆ ℤ & ⊢ (𝜏 → 𝜓) & ⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → (𝜓 ↔ 𝜒)) & ⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) = (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗)))) & ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃) ∧ (𝜒 ∧ 𝑥 ∈ ℝ)) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) | ||
| Theorem | cau3 15281* | Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 15271 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) | ||
| Theorem | cau4 15282* | Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) ⇒ ⊢ (𝑁 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑊 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | ||
| Theorem | caubnd2 15283* | A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) | ||
| Theorem | caubnd 15284* | A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 14-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦) | ||
| Theorem | sqreulem 15285 | Lemma for sqreu 15286: write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ 𝐵 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝐵) ∧ (i · 𝐵) ∉ ℝ+)) | ||
| Theorem | sqreu 15286* | Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | ||
| Theorem | sqrtcl 15287 | Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ) | ||
| Theorem | sqrtthlem 15288 | Lemma for sqrtth 15290. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)) | ||
| Theorem | sqrtf 15289 | Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ √:ℂ⟶ℂ | ||
| Theorem | sqrtth 15290 | Square root theorem over the complex numbers. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴) | ||
| Theorem | sqrtrege0 15291 | The square root function must make a choice between the two roots, which differ by a sign change. In the general complex case, the choice of "positive" and "negative" is not so clear. The convention we use is to take the root with positive real part, unless 𝐴 is a nonpositive real (in which case both roots have 0 real part); in this case we take the one in the positive imaginary direction. Another way to look at this is that we choose the root that is largest with respect to lexicographic order on the complex numbers (sorting by real part first, then by imaginary part as tie-breaker). (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴))) | ||
| Theorem | eqsqrtor 15292 | Solve an equation containing a square. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = 𝐵 ↔ (𝐴 = (√‘𝐵) ∨ 𝐴 = -(√‘𝐵)))) | ||
| Theorem | eqsqrtd 15293 | A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 𝐵) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) & ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐴 = (√‘𝐵)) | ||
| Theorem | eqsqrt2d 15294 | A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 𝐵) & ⊢ (𝜑 → 0 < (ℜ‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 = (√‘𝐵)) | ||
| Theorem | amgm2 15295 | Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by Mario Carneiro, 2-Jul-2014.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)) | ||
| Theorem | sqrtthi 15296 | Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
| Theorem | sqrtcli 15297 | The square root of a nonnegative real is a real. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘𝐴) ∈ ℝ) | ||
| Theorem | sqrtgt0i 15298 | The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 < 𝐴 → 0 < (√‘𝐴)) | ||
| Theorem | sqrtmsqi 15299 | Square root of square. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴 · 𝐴)) = 𝐴) | ||
| Theorem | sqrtsqi 15300 | Square root of square. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴↑2)) = 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |