MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqrt Structured version   Visualization version   GIF version

Definition df-sqrt 14955
Description: Define a function whose value is the square root of a complex number. For example, (√‘25) = 5 (ex-sqrt 28827).

Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 28827. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15082 for its closure, sqrtval 14957 for its value, sqrtth 15085 and sqsqrti 15096 for its relationship to squares, and sqrt11i 15105 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

Assertion
Ref Expression
df-sqrt √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-sqrt
StepHypRef Expression
1 csqrt 14953 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 10878 . . 3 class
4 vy . . . . . . . 8 setvar 𝑦
54cv 1538 . . . . . . 7 class 𝑦
6 c2 12037 . . . . . . 7 class 2
7 cexp 13791 . . . . . . 7 class
85, 6, 7co 7284 . . . . . 6 class (𝑦↑2)
92cv 1538 . . . . . 6 class 𝑥
108, 9wceq 1539 . . . . 5 wff (𝑦↑2) = 𝑥
11 cc0 10880 . . . . . 6 class 0
12 cre 14817 . . . . . . 7 class
135, 12cfv 6437 . . . . . 6 class (ℜ‘𝑦)
14 cle 11019 . . . . . 6 class
1511, 13, 14wbr 5075 . . . . 5 wff 0 ≤ (ℜ‘𝑦)
16 ci 10882 . . . . . . 7 class i
17 cmul 10885 . . . . . . 7 class ·
1816, 5, 17co 7284 . . . . . 6 class (i · 𝑦)
19 crp 12739 . . . . . 6 class +
2018, 19wnel 3050 . . . . 5 wff (i · 𝑦) ∉ ℝ+
2110, 15, 20w3a 1086 . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
2221, 4, 3crio 7240 . . 3 class (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
232, 3, 22cmpt 5158 . 2 class (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
241, 23wceq 1539 1 wff √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Colors of variables: wff setvar class
This definition is referenced by:  sqrtval  14957  sqrtf  15084  cphsscph  24424
  Copyright terms: Public domain W3C validator