MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqrt Structured version   Visualization version   GIF version

Definition df-sqrt 15274
Description: Define a function whose value is the square root of a complex number. For example, (√‘25) = 5 (ex-sqrt 30473).

Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30473. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15400 for its closure, sqrtval 15276 for its value, sqrtth 15403 and sqsqrti 15414 for its relationship to squares, and sqrt11i 15423 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

Assertion
Ref Expression
df-sqrt √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-sqrt
StepHypRef Expression
1 csqrt 15272 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 11153 . . 3 class
4 vy . . . . . . . 8 setvar 𝑦
54cv 1539 . . . . . . 7 class 𝑦
6 c2 12321 . . . . . . 7 class 2
7 cexp 14102 . . . . . . 7 class
85, 6, 7co 7431 . . . . . 6 class (𝑦↑2)
92cv 1539 . . . . . 6 class 𝑥
108, 9wceq 1540 . . . . 5 wff (𝑦↑2) = 𝑥
11 cc0 11155 . . . . . 6 class 0
12 cre 15136 . . . . . . 7 class
135, 12cfv 6561 . . . . . 6 class (ℜ‘𝑦)
14 cle 11296 . . . . . 6 class
1511, 13, 14wbr 5143 . . . . 5 wff 0 ≤ (ℜ‘𝑦)
16 ci 11157 . . . . . . 7 class i
17 cmul 11160 . . . . . . 7 class ·
1816, 5, 17co 7431 . . . . . 6 class (i · 𝑦)
19 crp 13034 . . . . . 6 class +
2018, 19wnel 3046 . . . . 5 wff (i · 𝑦) ∉ ℝ+
2110, 15, 20w3a 1087 . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
2221, 4, 3crio 7387 . . 3 class (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
232, 3, 22cmpt 5225 . 2 class (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
241, 23wceq 1540 1 wff √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Colors of variables: wff setvar class
This definition is referenced by:  sqrtval  15276  sqrtf  15402  cphsscph  25285
  Copyright terms: Public domain W3C validator