MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqrt Structured version   Visualization version   GIF version

Definition df-sqrt 15134
Description: Define a function whose value is the square root of a complex number. For example, (√‘25) = 5 (ex-sqrt 30424).

Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30424. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15261 for its closure, sqrtval 15136 for its value, sqrtth 15264 and sqsqrti 15275 for its relationship to squares, and sqrt11i 15284 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

Assertion
Ref Expression
df-sqrt √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-sqrt
StepHypRef Expression
1 csqrt 15132 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 10996 . . 3 class
4 vy . . . . . . . 8 setvar 𝑦
54cv 1540 . . . . . . 7 class 𝑦
6 c2 12172 . . . . . . 7 class 2
7 cexp 13960 . . . . . . 7 class
85, 6, 7co 7341 . . . . . 6 class (𝑦↑2)
92cv 1540 . . . . . 6 class 𝑥
108, 9wceq 1541 . . . . 5 wff (𝑦↑2) = 𝑥
11 cc0 10998 . . . . . 6 class 0
12 cre 14996 . . . . . . 7 class
135, 12cfv 6477 . . . . . 6 class (ℜ‘𝑦)
14 cle 11139 . . . . . 6 class
1511, 13, 14wbr 5089 . . . . 5 wff 0 ≤ (ℜ‘𝑦)
16 ci 11000 . . . . . . 7 class i
17 cmul 11003 . . . . . . 7 class ·
1816, 5, 17co 7341 . . . . . 6 class (i · 𝑦)
19 crp 12882 . . . . . 6 class +
2018, 19wnel 3030 . . . . 5 wff (i · 𝑦) ∉ ℝ+
2110, 15, 20w3a 1086 . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
2221, 4, 3crio 7297 . . 3 class (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
232, 3, 22cmpt 5170 . 2 class (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
241, 23wceq 1541 1 wff √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Colors of variables: wff setvar class
This definition is referenced by:  sqrtval  15136  sqrtf  15263  cphsscph  25171
  Copyright terms: Public domain W3C validator