| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sqrt | Structured version Visualization version GIF version | ||
| Description: Define a function whose
value is the square root of a complex number.
For example, (√‘25) = 5 (ex-sqrt 30390).
Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30390. The square root symbol was introduced in 1525 by Christoff Rudolff. See sqrtcl 15335 for its closure, sqrtval 15210 for its value, sqrtth 15338 and sqsqrti 15349 for its relationship to squares, and sqrt11i 15358 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.) |
| Ref | Expression |
|---|---|
| df-sqrt | ⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csqrt 15206 | . 2 class √ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 11073 | . . 3 class ℂ | |
| 4 | vy | . . . . . . . 8 setvar 𝑦 | |
| 5 | 4 | cv 1539 | . . . . . . 7 class 𝑦 |
| 6 | c2 12248 | . . . . . . 7 class 2 | |
| 7 | cexp 14033 | . . . . . . 7 class ↑ | |
| 8 | 5, 6, 7 | co 7390 | . . . . . 6 class (𝑦↑2) |
| 9 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 10 | 8, 9 | wceq 1540 | . . . . 5 wff (𝑦↑2) = 𝑥 |
| 11 | cc0 11075 | . . . . . 6 class 0 | |
| 12 | cre 15070 | . . . . . . 7 class ℜ | |
| 13 | 5, 12 | cfv 6514 | . . . . . 6 class (ℜ‘𝑦) |
| 14 | cle 11216 | . . . . . 6 class ≤ | |
| 15 | 11, 13, 14 | wbr 5110 | . . . . 5 wff 0 ≤ (ℜ‘𝑦) |
| 16 | ci 11077 | . . . . . . 7 class i | |
| 17 | cmul 11080 | . . . . . . 7 class · | |
| 18 | 16, 5, 17 | co 7390 | . . . . . 6 class (i · 𝑦) |
| 19 | crp 12958 | . . . . . 6 class ℝ+ | |
| 20 | 18, 19 | wnel 3030 | . . . . 5 wff (i · 𝑦) ∉ ℝ+ |
| 21 | 10, 15, 20 | w3a 1086 | . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) |
| 22 | 21, 4, 3 | crio 7346 | . . 3 class (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) |
| 23 | 2, 3, 22 | cmpt 5191 | . 2 class (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| 24 | 1, 23 | wceq 1540 | 1 wff √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sqrtval 15210 sqrtf 15337 cphsscph 25158 |
| Copyright terms: Public domain | W3C validator |