MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqrt Structured version   Visualization version   GIF version

Definition df-sqrt 15160
Description: Define a function whose value is the square root of a complex number. For example, (√‘25) = 5 (ex-sqrt 30416).

Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30416. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15287 for its closure, sqrtval 15162 for its value, sqrtth 15290 and sqsqrti 15301 for its relationship to squares, and sqrt11i 15310 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

Assertion
Ref Expression
df-sqrt √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-sqrt
StepHypRef Expression
1 csqrt 15158 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 11026 . . 3 class
4 vy . . . . . . . 8 setvar 𝑦
54cv 1539 . . . . . . 7 class 𝑦
6 c2 12201 . . . . . . 7 class 2
7 cexp 13986 . . . . . . 7 class
85, 6, 7co 7353 . . . . . 6 class (𝑦↑2)
92cv 1539 . . . . . 6 class 𝑥
108, 9wceq 1540 . . . . 5 wff (𝑦↑2) = 𝑥
11 cc0 11028 . . . . . 6 class 0
12 cre 15022 . . . . . . 7 class
135, 12cfv 6486 . . . . . 6 class (ℜ‘𝑦)
14 cle 11169 . . . . . 6 class
1511, 13, 14wbr 5095 . . . . 5 wff 0 ≤ (ℜ‘𝑦)
16 ci 11030 . . . . . . 7 class i
17 cmul 11033 . . . . . . 7 class ·
1816, 5, 17co 7353 . . . . . 6 class (i · 𝑦)
19 crp 12911 . . . . . 6 class +
2018, 19wnel 3029 . . . . 5 wff (i · 𝑦) ∉ ℝ+
2110, 15, 20w3a 1086 . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
2221, 4, 3crio 7309 . . 3 class (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
232, 3, 22cmpt 5176 . 2 class (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
241, 23wceq 1540 1 wff √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Colors of variables: wff setvar class
This definition is referenced by:  sqrtval  15162  sqrtf  15289  cphsscph  25167
  Copyright terms: Public domain W3C validator