Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-sqrt | Structured version Visualization version GIF version |
Description: Define a function whose
value is the square root of a complex number.
For example, (√‘25) = 5 (ex-sqrt 28827).
Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 28827. The square root symbol was introduced in 1525 by Christoff Rudolff. See sqrtcl 15082 for its closure, sqrtval 14957 for its value, sqrtth 15085 and sqsqrti 15096 for its relationship to squares, and sqrt11i 15105 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.) |
Ref | Expression |
---|---|
df-sqrt | ⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csqrt 14953 | . 2 class √ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cc 10878 | . . 3 class ℂ | |
4 | vy | . . . . . . . 8 setvar 𝑦 | |
5 | 4 | cv 1538 | . . . . . . 7 class 𝑦 |
6 | c2 12037 | . . . . . . 7 class 2 | |
7 | cexp 13791 | . . . . . . 7 class ↑ | |
8 | 5, 6, 7 | co 7284 | . . . . . 6 class (𝑦↑2) |
9 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
10 | 8, 9 | wceq 1539 | . . . . 5 wff (𝑦↑2) = 𝑥 |
11 | cc0 10880 | . . . . . 6 class 0 | |
12 | cre 14817 | . . . . . . 7 class ℜ | |
13 | 5, 12 | cfv 6437 | . . . . . 6 class (ℜ‘𝑦) |
14 | cle 11019 | . . . . . 6 class ≤ | |
15 | 11, 13, 14 | wbr 5075 | . . . . 5 wff 0 ≤ (ℜ‘𝑦) |
16 | ci 10882 | . . . . . . 7 class i | |
17 | cmul 10885 | . . . . . . 7 class · | |
18 | 16, 5, 17 | co 7284 | . . . . . 6 class (i · 𝑦) |
19 | crp 12739 | . . . . . 6 class ℝ+ | |
20 | 18, 19 | wnel 3050 | . . . . 5 wff (i · 𝑦) ∉ ℝ+ |
21 | 10, 15, 20 | w3a 1086 | . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) |
22 | 21, 4, 3 | crio 7240 | . . 3 class (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) |
23 | 2, 3, 22 | cmpt 5158 | . 2 class (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
24 | 1, 23 | wceq 1539 | 1 wff √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
Colors of variables: wff setvar class |
This definition is referenced by: sqrtval 14957 sqrtf 15084 cphsscph 24424 |
Copyright terms: Public domain | W3C validator |