![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sqrt | Structured version Visualization version GIF version |
Description: Define a function whose
value is the square root of a complex number.
For example, (√‘25) = 5 (ex-sqrt 30486).
Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30486. The square root symbol was introduced in 1525 by Christoff Rudolff. See sqrtcl 15410 for its closure, sqrtval 15286 for its value, sqrtth 15413 and sqsqrti 15424 for its relationship to squares, and sqrt11i 15433 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.) |
Ref | Expression |
---|---|
df-sqrt | ⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csqrt 15282 | . 2 class √ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cc 11182 | . . 3 class ℂ | |
4 | vy | . . . . . . . 8 setvar 𝑦 | |
5 | 4 | cv 1536 | . . . . . . 7 class 𝑦 |
6 | c2 12348 | . . . . . . 7 class 2 | |
7 | cexp 14112 | . . . . . . 7 class ↑ | |
8 | 5, 6, 7 | co 7448 | . . . . . 6 class (𝑦↑2) |
9 | 2 | cv 1536 | . . . . . 6 class 𝑥 |
10 | 8, 9 | wceq 1537 | . . . . 5 wff (𝑦↑2) = 𝑥 |
11 | cc0 11184 | . . . . . 6 class 0 | |
12 | cre 15146 | . . . . . . 7 class ℜ | |
13 | 5, 12 | cfv 6573 | . . . . . 6 class (ℜ‘𝑦) |
14 | cle 11325 | . . . . . 6 class ≤ | |
15 | 11, 13, 14 | wbr 5166 | . . . . 5 wff 0 ≤ (ℜ‘𝑦) |
16 | ci 11186 | . . . . . . 7 class i | |
17 | cmul 11189 | . . . . . . 7 class · | |
18 | 16, 5, 17 | co 7448 | . . . . . 6 class (i · 𝑦) |
19 | crp 13057 | . . . . . 6 class ℝ+ | |
20 | 18, 19 | wnel 3052 | . . . . 5 wff (i · 𝑦) ∉ ℝ+ |
21 | 10, 15, 20 | w3a 1087 | . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) |
22 | 21, 4, 3 | crio 7403 | . . 3 class (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) |
23 | 2, 3, 22 | cmpt 5249 | . 2 class (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
24 | 1, 23 | wceq 1537 | 1 wff √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
Colors of variables: wff setvar class |
This definition is referenced by: sqrtval 15286 sqrtf 15412 cphsscph 25304 |
Copyright terms: Public domain | W3C validator |