MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqrt Structured version   Visualization version   GIF version

Definition df-sqrt 15252
Description: Define a function whose value is the square root of a complex number. For example, (√‘25) = 5 (ex-sqrt 30381).

Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30381. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15378 for its closure, sqrtval 15254 for its value, sqrtth 15381 and sqsqrti 15392 for its relationship to squares, and sqrt11i 15401 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

Assertion
Ref Expression
df-sqrt √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-sqrt
StepHypRef Expression
1 csqrt 15250 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 11125 . . 3 class
4 vy . . . . . . . 8 setvar 𝑦
54cv 1539 . . . . . . 7 class 𝑦
6 c2 12293 . . . . . . 7 class 2
7 cexp 14077 . . . . . . 7 class
85, 6, 7co 7403 . . . . . 6 class (𝑦↑2)
92cv 1539 . . . . . 6 class 𝑥
108, 9wceq 1540 . . . . 5 wff (𝑦↑2) = 𝑥
11 cc0 11127 . . . . . 6 class 0
12 cre 15114 . . . . . . 7 class
135, 12cfv 6530 . . . . . 6 class (ℜ‘𝑦)
14 cle 11268 . . . . . 6 class
1511, 13, 14wbr 5119 . . . . 5 wff 0 ≤ (ℜ‘𝑦)
16 ci 11129 . . . . . . 7 class i
17 cmul 11132 . . . . . . 7 class ·
1816, 5, 17co 7403 . . . . . 6 class (i · 𝑦)
19 crp 13006 . . . . . 6 class +
2018, 19wnel 3036 . . . . 5 wff (i · 𝑦) ∉ ℝ+
2110, 15, 20w3a 1086 . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
2221, 4, 3crio 7359 . . 3 class (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
232, 3, 22cmpt 5201 . 2 class (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
241, 23wceq 1540 1 wff √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Colors of variables: wff setvar class
This definition is referenced by:  sqrtval  15254  sqrtf  15380  cphsscph  25201
  Copyright terms: Public domain W3C validator