| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sqrt | Structured version Visualization version GIF version | ||
| Description: Define a function whose
value is the square root of a complex number.
For example, (√‘25) = 5 (ex-sqrt 30383).
Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30383. The square root symbol was introduced in 1525 by Christoff Rudolff. See sqrtcl 15328 for its closure, sqrtval 15203 for its value, sqrtth 15331 and sqsqrti 15342 for its relationship to squares, and sqrt11i 15351 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.) |
| Ref | Expression |
|---|---|
| df-sqrt | ⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csqrt 15199 | . 2 class √ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 11066 | . . 3 class ℂ | |
| 4 | vy | . . . . . . . 8 setvar 𝑦 | |
| 5 | 4 | cv 1539 | . . . . . . 7 class 𝑦 |
| 6 | c2 12241 | . . . . . . 7 class 2 | |
| 7 | cexp 14026 | . . . . . . 7 class ↑ | |
| 8 | 5, 6, 7 | co 7387 | . . . . . 6 class (𝑦↑2) |
| 9 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 10 | 8, 9 | wceq 1540 | . . . . 5 wff (𝑦↑2) = 𝑥 |
| 11 | cc0 11068 | . . . . . 6 class 0 | |
| 12 | cre 15063 | . . . . . . 7 class ℜ | |
| 13 | 5, 12 | cfv 6511 | . . . . . 6 class (ℜ‘𝑦) |
| 14 | cle 11209 | . . . . . 6 class ≤ | |
| 15 | 11, 13, 14 | wbr 5107 | . . . . 5 wff 0 ≤ (ℜ‘𝑦) |
| 16 | ci 11070 | . . . . . . 7 class i | |
| 17 | cmul 11073 | . . . . . . 7 class · | |
| 18 | 16, 5, 17 | co 7387 | . . . . . 6 class (i · 𝑦) |
| 19 | crp 12951 | . . . . . 6 class ℝ+ | |
| 20 | 18, 19 | wnel 3029 | . . . . 5 wff (i · 𝑦) ∉ ℝ+ |
| 21 | 10, 15, 20 | w3a 1086 | . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) |
| 22 | 21, 4, 3 | crio 7343 | . . 3 class (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) |
| 23 | 2, 3, 22 | cmpt 5188 | . 2 class (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| 24 | 1, 23 | wceq 1540 | 1 wff √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sqrtval 15203 sqrtf 15330 cphsscph 25151 |
| Copyright terms: Public domain | W3C validator |