MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqrt Structured version   Visualization version   GIF version

Definition df-sqrt 15208
Description: Define a function whose value is the square root of a complex number. For example, (√‘25) = 5 (ex-sqrt 30390).

Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30390. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15335 for its closure, sqrtval 15210 for its value, sqrtth 15338 and sqsqrti 15349 for its relationship to squares, and sqrt11i 15358 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

Assertion
Ref Expression
df-sqrt √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-sqrt
StepHypRef Expression
1 csqrt 15206 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 11073 . . 3 class
4 vy . . . . . . . 8 setvar 𝑦
54cv 1539 . . . . . . 7 class 𝑦
6 c2 12248 . . . . . . 7 class 2
7 cexp 14033 . . . . . . 7 class
85, 6, 7co 7390 . . . . . 6 class (𝑦↑2)
92cv 1539 . . . . . 6 class 𝑥
108, 9wceq 1540 . . . . 5 wff (𝑦↑2) = 𝑥
11 cc0 11075 . . . . . 6 class 0
12 cre 15070 . . . . . . 7 class
135, 12cfv 6514 . . . . . 6 class (ℜ‘𝑦)
14 cle 11216 . . . . . 6 class
1511, 13, 14wbr 5110 . . . . 5 wff 0 ≤ (ℜ‘𝑦)
16 ci 11077 . . . . . . 7 class i
17 cmul 11080 . . . . . . 7 class ·
1816, 5, 17co 7390 . . . . . 6 class (i · 𝑦)
19 crp 12958 . . . . . 6 class +
2018, 19wnel 3030 . . . . 5 wff (i · 𝑦) ∉ ℝ+
2110, 15, 20w3a 1086 . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
2221, 4, 3crio 7346 . . 3 class (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
232, 3, 22cmpt 5191 . 2 class (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
241, 23wceq 1540 1 wff √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Colors of variables: wff setvar class
This definition is referenced by:  sqrtval  15210  sqrtf  15337  cphsscph  25158
  Copyright terms: Public domain W3C validator