MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqrt Structured version   Visualization version   GIF version

Definition df-sqrt 15152
Description: Define a function whose value is the square root of a complex number. For example, (√‘25) = 5 (ex-sqrt 30445).

Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30445. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15279 for its closure, sqrtval 15154 for its value, sqrtth 15282 and sqsqrti 15293 for its relationship to squares, and sqrt11i 15302 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

Assertion
Ref Expression
df-sqrt √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-sqrt
StepHypRef Expression
1 csqrt 15150 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 11014 . . 3 class
4 vy . . . . . . . 8 setvar 𝑦
54cv 1540 . . . . . . 7 class 𝑦
6 c2 12190 . . . . . . 7 class 2
7 cexp 13978 . . . . . . 7 class
85, 6, 7co 7355 . . . . . 6 class (𝑦↑2)
92cv 1540 . . . . . 6 class 𝑥
108, 9wceq 1541 . . . . 5 wff (𝑦↑2) = 𝑥
11 cc0 11016 . . . . . 6 class 0
12 cre 15014 . . . . . . 7 class
135, 12cfv 6489 . . . . . 6 class (ℜ‘𝑦)
14 cle 11157 . . . . . 6 class
1511, 13, 14wbr 5095 . . . . 5 wff 0 ≤ (ℜ‘𝑦)
16 ci 11018 . . . . . . 7 class i
17 cmul 11021 . . . . . . 7 class ·
1816, 5, 17co 7355 . . . . . 6 class (i · 𝑦)
19 crp 12900 . . . . . 6 class +
2018, 19wnel 3034 . . . . 5 wff (i · 𝑦) ∉ ℝ+
2110, 15, 20w3a 1086 . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
2221, 4, 3crio 7311 . . 3 class (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
232, 3, 22cmpt 5176 . 2 class (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
241, 23wceq 1541 1 wff √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Colors of variables: wff setvar class
This definition is referenced by:  sqrtval  15154  sqrtf  15281  cphsscph  25188
  Copyright terms: Public domain W3C validator