MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqrt Structured version   Visualization version   GIF version

Definition df-sqrt 15284
Description: Define a function whose value is the square root of a complex number. For example, (√‘25) = 5 (ex-sqrt 30486).

Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30486. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15410 for its closure, sqrtval 15286 for its value, sqrtth 15413 and sqsqrti 15424 for its relationship to squares, and sqrt11i 15433 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

Assertion
Ref Expression
df-sqrt √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-sqrt
StepHypRef Expression
1 csqrt 15282 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 11182 . . 3 class
4 vy . . . . . . . 8 setvar 𝑦
54cv 1536 . . . . . . 7 class 𝑦
6 c2 12348 . . . . . . 7 class 2
7 cexp 14112 . . . . . . 7 class
85, 6, 7co 7448 . . . . . 6 class (𝑦↑2)
92cv 1536 . . . . . 6 class 𝑥
108, 9wceq 1537 . . . . 5 wff (𝑦↑2) = 𝑥
11 cc0 11184 . . . . . 6 class 0
12 cre 15146 . . . . . . 7 class
135, 12cfv 6573 . . . . . 6 class (ℜ‘𝑦)
14 cle 11325 . . . . . 6 class
1511, 13, 14wbr 5166 . . . . 5 wff 0 ≤ (ℜ‘𝑦)
16 ci 11186 . . . . . . 7 class i
17 cmul 11189 . . . . . . 7 class ·
1816, 5, 17co 7448 . . . . . 6 class (i · 𝑦)
19 crp 13057 . . . . . 6 class +
2018, 19wnel 3052 . . . . 5 wff (i · 𝑦) ∉ ℝ+
2110, 15, 20w3a 1087 . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
2221, 4, 3crio 7403 . . 3 class (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
232, 3, 22cmpt 5249 . 2 class (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
241, 23wceq 1537 1 wff √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Colors of variables: wff setvar class
This definition is referenced by:  sqrtval  15286  sqrtf  15412  cphsscph  25304
  Copyright terms: Public domain W3C validator