| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sqrt | Structured version Visualization version GIF version | ||
| Description: Define a function whose
value is the square root of a complex number.
For example, (√‘25) = 5 (ex-sqrt 30381).
Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30381. The square root symbol was introduced in 1525 by Christoff Rudolff. See sqrtcl 15378 for its closure, sqrtval 15254 for its value, sqrtth 15381 and sqsqrti 15392 for its relationship to squares, and sqrt11i 15401 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.) |
| Ref | Expression |
|---|---|
| df-sqrt | ⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csqrt 15250 | . 2 class √ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 11125 | . . 3 class ℂ | |
| 4 | vy | . . . . . . . 8 setvar 𝑦 | |
| 5 | 4 | cv 1539 | . . . . . . 7 class 𝑦 |
| 6 | c2 12293 | . . . . . . 7 class 2 | |
| 7 | cexp 14077 | . . . . . . 7 class ↑ | |
| 8 | 5, 6, 7 | co 7403 | . . . . . 6 class (𝑦↑2) |
| 9 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 10 | 8, 9 | wceq 1540 | . . . . 5 wff (𝑦↑2) = 𝑥 |
| 11 | cc0 11127 | . . . . . 6 class 0 | |
| 12 | cre 15114 | . . . . . . 7 class ℜ | |
| 13 | 5, 12 | cfv 6530 | . . . . . 6 class (ℜ‘𝑦) |
| 14 | cle 11268 | . . . . . 6 class ≤ | |
| 15 | 11, 13, 14 | wbr 5119 | . . . . 5 wff 0 ≤ (ℜ‘𝑦) |
| 16 | ci 11129 | . . . . . . 7 class i | |
| 17 | cmul 11132 | . . . . . . 7 class · | |
| 18 | 16, 5, 17 | co 7403 | . . . . . 6 class (i · 𝑦) |
| 19 | crp 13006 | . . . . . 6 class ℝ+ | |
| 20 | 18, 19 | wnel 3036 | . . . . 5 wff (i · 𝑦) ∉ ℝ+ |
| 21 | 10, 15, 20 | w3a 1086 | . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) |
| 22 | 21, 4, 3 | crio 7359 | . . 3 class (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) |
| 23 | 2, 3, 22 | cmpt 5201 | . 2 class (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| 24 | 1, 23 | wceq 1540 | 1 wff √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sqrtval 15254 sqrtf 15380 cphsscph 25201 |
| Copyright terms: Public domain | W3C validator |