MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqrt Structured version   Visualization version   GIF version

Definition df-sqrt 15270
Description: Define a function whose value is the square root of a complex number. For example, (√‘25) = 5 (ex-sqrt 30482).

Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30482. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15396 for its closure, sqrtval 15272 for its value, sqrtth 15399 and sqsqrti 15410 for its relationship to squares, and sqrt11i 15419 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

Assertion
Ref Expression
df-sqrt √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-sqrt
StepHypRef Expression
1 csqrt 15268 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 11150 . . 3 class
4 vy . . . . . . . 8 setvar 𝑦
54cv 1535 . . . . . . 7 class 𝑦
6 c2 12318 . . . . . . 7 class 2
7 cexp 14098 . . . . . . 7 class
85, 6, 7co 7430 . . . . . 6 class (𝑦↑2)
92cv 1535 . . . . . 6 class 𝑥
108, 9wceq 1536 . . . . 5 wff (𝑦↑2) = 𝑥
11 cc0 11152 . . . . . 6 class 0
12 cre 15132 . . . . . . 7 class
135, 12cfv 6562 . . . . . 6 class (ℜ‘𝑦)
14 cle 11293 . . . . . 6 class
1511, 13, 14wbr 5147 . . . . 5 wff 0 ≤ (ℜ‘𝑦)
16 ci 11154 . . . . . . 7 class i
17 cmul 11157 . . . . . . 7 class ·
1816, 5, 17co 7430 . . . . . 6 class (i · 𝑦)
19 crp 13031 . . . . . 6 class +
2018, 19wnel 3043 . . . . 5 wff (i · 𝑦) ∉ ℝ+
2110, 15, 20w3a 1086 . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
2221, 4, 3crio 7386 . . 3 class (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
232, 3, 22cmpt 5230 . 2 class (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
241, 23wceq 1536 1 wff √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Colors of variables: wff setvar class
This definition is referenced by:  sqrtval  15272  sqrtf  15398  cphsscph  25298
  Copyright terms: Public domain W3C validator