MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqrt Structured version   Visualization version   GIF version

Definition df-sqrt 14874
Description: Define a function whose value is the square root of a complex number. For example, (√‘25) = 5 (ex-sqrt 28719).

Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 28719. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15001 for its closure, sqrtval 14876 for its value, sqrtth 15004 and sqsqrti 15015 for its relationship to squares, and sqrt11i 15024 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

Assertion
Ref Expression
df-sqrt √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-sqrt
StepHypRef Expression
1 csqrt 14872 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 10800 . . 3 class
4 vy . . . . . . . 8 setvar 𝑦
54cv 1538 . . . . . . 7 class 𝑦
6 c2 11958 . . . . . . 7 class 2
7 cexp 13710 . . . . . . 7 class
85, 6, 7co 7255 . . . . . 6 class (𝑦↑2)
92cv 1538 . . . . . 6 class 𝑥
108, 9wceq 1539 . . . . 5 wff (𝑦↑2) = 𝑥
11 cc0 10802 . . . . . 6 class 0
12 cre 14736 . . . . . . 7 class
135, 12cfv 6418 . . . . . 6 class (ℜ‘𝑦)
14 cle 10941 . . . . . 6 class
1511, 13, 14wbr 5070 . . . . 5 wff 0 ≤ (ℜ‘𝑦)
16 ci 10804 . . . . . . 7 class i
17 cmul 10807 . . . . . . 7 class ·
1816, 5, 17co 7255 . . . . . 6 class (i · 𝑦)
19 crp 12659 . . . . . 6 class +
2018, 19wnel 3048 . . . . 5 wff (i · 𝑦) ∉ ℝ+
2110, 15, 20w3a 1085 . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
2221, 4, 3crio 7211 . . 3 class (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
232, 3, 22cmpt 5153 . 2 class (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
241, 23wceq 1539 1 wff √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Colors of variables: wff setvar class
This definition is referenced by:  sqrtval  14876  sqrtf  15003  cphsscph  24320
  Copyright terms: Public domain W3C validator