| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sqrt | Structured version Visualization version GIF version | ||
| Description: Define a function whose
value is the square root of a complex number.
For example, (√‘25) = 5 (ex-sqrt 30416).
Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30416. The square root symbol was introduced in 1525 by Christoff Rudolff. See sqrtcl 15287 for its closure, sqrtval 15162 for its value, sqrtth 15290 and sqsqrti 15301 for its relationship to squares, and sqrt11i 15310 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.) |
| Ref | Expression |
|---|---|
| df-sqrt | ⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csqrt 15158 | . 2 class √ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 11026 | . . 3 class ℂ | |
| 4 | vy | . . . . . . . 8 setvar 𝑦 | |
| 5 | 4 | cv 1539 | . . . . . . 7 class 𝑦 |
| 6 | c2 12201 | . . . . . . 7 class 2 | |
| 7 | cexp 13986 | . . . . . . 7 class ↑ | |
| 8 | 5, 6, 7 | co 7353 | . . . . . 6 class (𝑦↑2) |
| 9 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 10 | 8, 9 | wceq 1540 | . . . . 5 wff (𝑦↑2) = 𝑥 |
| 11 | cc0 11028 | . . . . . 6 class 0 | |
| 12 | cre 15022 | . . . . . . 7 class ℜ | |
| 13 | 5, 12 | cfv 6486 | . . . . . 6 class (ℜ‘𝑦) |
| 14 | cle 11169 | . . . . . 6 class ≤ | |
| 15 | 11, 13, 14 | wbr 5095 | . . . . 5 wff 0 ≤ (ℜ‘𝑦) |
| 16 | ci 11030 | . . . . . . 7 class i | |
| 17 | cmul 11033 | . . . . . . 7 class · | |
| 18 | 16, 5, 17 | co 7353 | . . . . . 6 class (i · 𝑦) |
| 19 | crp 12911 | . . . . . 6 class ℝ+ | |
| 20 | 18, 19 | wnel 3029 | . . . . 5 wff (i · 𝑦) ∉ ℝ+ |
| 21 | 10, 15, 20 | w3a 1086 | . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) |
| 22 | 21, 4, 3 | crio 7309 | . . 3 class (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) |
| 23 | 2, 3, 22 | cmpt 5176 | . 2 class (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| 24 | 1, 23 | wceq 1540 | 1 wff √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sqrtval 15162 sqrtf 15289 cphsscph 25167 |
| Copyright terms: Public domain | W3C validator |