MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqrt Structured version   Visualization version   GIF version

Definition df-sqrt 15201
Description: Define a function whose value is the square root of a complex number. For example, (√‘25) = 5 (ex-sqrt 30383).

Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30383. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15328 for its closure, sqrtval 15203 for its value, sqrtth 15331 and sqsqrti 15342 for its relationship to squares, and sqrt11i 15351 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

Assertion
Ref Expression
df-sqrt √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-sqrt
StepHypRef Expression
1 csqrt 15199 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 11066 . . 3 class
4 vy . . . . . . . 8 setvar 𝑦
54cv 1539 . . . . . . 7 class 𝑦
6 c2 12241 . . . . . . 7 class 2
7 cexp 14026 . . . . . . 7 class
85, 6, 7co 7387 . . . . . 6 class (𝑦↑2)
92cv 1539 . . . . . 6 class 𝑥
108, 9wceq 1540 . . . . 5 wff (𝑦↑2) = 𝑥
11 cc0 11068 . . . . . 6 class 0
12 cre 15063 . . . . . . 7 class
135, 12cfv 6511 . . . . . 6 class (ℜ‘𝑦)
14 cle 11209 . . . . . 6 class
1511, 13, 14wbr 5107 . . . . 5 wff 0 ≤ (ℜ‘𝑦)
16 ci 11070 . . . . . . 7 class i
17 cmul 11073 . . . . . . 7 class ·
1816, 5, 17co 7387 . . . . . 6 class (i · 𝑦)
19 crp 12951 . . . . . 6 class +
2018, 19wnel 3029 . . . . 5 wff (i · 𝑦) ∉ ℝ+
2110, 15, 20w3a 1086 . . . 4 wff ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)
2221, 4, 3crio 7343 . . 3 class (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
232, 3, 22cmpt 5188 . 2 class (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
241, 23wceq 1540 1 wff √ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
Colors of variables: wff setvar class
This definition is referenced by:  sqrtval  15203  sqrtf  15330  cphsscph  25151
  Copyright terms: Public domain W3C validator