![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absval | Structured version Visualization version GIF version |
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
absval | โข (๐ด โ โ โ (absโ๐ด) = (โโ(๐ด ยท (โโ๐ด)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . 4 โข (๐ฅ = ๐ด โ (โโ๐ฅ) = (โโ๐ด)) | |
2 | oveq12 7418 | . . . 4 โข ((๐ฅ = ๐ด โง (โโ๐ฅ) = (โโ๐ด)) โ (๐ฅ ยท (โโ๐ฅ)) = (๐ด ยท (โโ๐ด))) | |
3 | 1, 2 | mpdan 686 | . . 3 โข (๐ฅ = ๐ด โ (๐ฅ ยท (โโ๐ฅ)) = (๐ด ยท (โโ๐ด))) |
4 | 3 | fveq2d 6896 | . 2 โข (๐ฅ = ๐ด โ (โโ(๐ฅ ยท (โโ๐ฅ))) = (โโ(๐ด ยท (โโ๐ด)))) |
5 | df-abs 15183 | . 2 โข abs = (๐ฅ โ โ โฆ (โโ(๐ฅ ยท (โโ๐ฅ)))) | |
6 | fvex 6905 | . 2 โข (โโ(๐ด ยท (โโ๐ด))) โ V | |
7 | 4, 5, 6 | fvmpt 6999 | 1 โข (๐ด โ โ โ (absโ๐ด) = (โโ(๐ด ยท (โโ๐ด)))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1542 โ wcel 2107 โcfv 6544 (class class class)co 7409 โcc 11108 ยท cmul 11115 โccj 15043 โcsqrt 15180 abscabs 15181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-abs 15183 |
This theorem is referenced by: absneg 15224 abscl 15225 abscj 15226 absvalsq 15227 absval2 15231 abs0 15232 absi 15233 absge0 15234 absrpcl 15235 absmul 15241 absid 15243 absre 15248 absf 15284 cphabscl 24702 cphipipcj 24717 tcphcphlem2 24753 siii 30106 norm-iii-i 30392 absfico 43917 |
Copyright terms: Public domain | W3C validator |