MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absval Structured version   Visualization version   GIF version

Theorem absval 15287
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absval (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))

Proof of Theorem absval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴))
2 oveq12 7457 . . . 4 ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴)))
31, 2mpdan 686 . . 3 (𝑥 = 𝐴 → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴)))
43fveq2d 6924 . 2 (𝑥 = 𝐴 → (√‘(𝑥 · (∗‘𝑥))) = (√‘(𝐴 · (∗‘𝐴))))
5 df-abs 15285 . 2 abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
6 fvex 6933 . 2 (√‘(𝐴 · (∗‘𝐴))) ∈ V
74, 5, 6fvmpt 7029 1 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cc 11182   · cmul 11189  ccj 15145  csqrt 15282  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-abs 15285
This theorem is referenced by:  absneg  15326  abscl  15327  abscj  15328  absvalsq  15329  absval2  15333  abs0  15334  absi  15335  absge0  15336  absrpcl  15337  absmul  15343  absid  15345  absre  15350  absf  15386  cphabscl  25238  cphipipcj  25253  tcphcphlem2  25289  siii  30885  norm-iii-i  31171  absfico  45125
  Copyright terms: Public domain W3C validator