![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absval | Structured version Visualization version GIF version |
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
absval | ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6893 | . . . 4 ⊢ (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴)) | |
2 | oveq12 7425 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴))) | |
3 | 1, 2 | mpdan 685 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴))) |
4 | 3 | fveq2d 6897 | . 2 ⊢ (𝑥 = 𝐴 → (√‘(𝑥 · (∗‘𝑥))) = (√‘(𝐴 · (∗‘𝐴)))) |
5 | df-abs 15236 | . 2 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
6 | fvex 6906 | . 2 ⊢ (√‘(𝐴 · (∗‘𝐴))) ∈ V | |
7 | 4, 5, 6 | fvmpt 7001 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6546 (class class class)co 7416 ℂcc 11147 · cmul 11154 ∗ccj 15096 √csqrt 15233 abscabs 15234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6498 df-fun 6548 df-fv 6554 df-ov 7419 df-abs 15236 |
This theorem is referenced by: absneg 15277 abscl 15278 abscj 15279 absvalsq 15280 absval2 15284 abs0 15285 absi 15286 absge0 15287 absrpcl 15288 absmul 15294 absid 15296 absre 15301 absf 15337 cphabscl 25201 cphipipcj 25216 tcphcphlem2 25252 siii 30783 norm-iii-i 31069 absfico 44861 |
Copyright terms: Public domain | W3C validator |