| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absf | Structured version Visualization version GIF version | ||
| Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| absf | ⊢ abs:ℂ⟶ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abs 15202 | . 2 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
| 2 | absval 15204 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) = (√‘(𝑥 · (∗‘𝑥)))) | |
| 3 | abscl 15244 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
| 4 | 2, 3 | eqeltrrd 2829 | . 2 ⊢ (𝑥 ∈ ℂ → (√‘(𝑥 · (∗‘𝑥))) ∈ ℝ) |
| 5 | 1, 4 | fmpti 7084 | 1 ⊢ abs:ℂ⟶ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 · cmul 11073 ∗ccj 15062 √csqrt 15199 abscabs 15200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 |
| This theorem is referenced by: lo1o1 15498 lo1o12 15499 abscn2 15565 climabs 15570 rlimabs 15575 cnfldds 21276 cnfldfun 21278 cnfldfunALT 21279 cnflddsOLD 21289 cnfldfunOLD 21291 cnfldfunALTOLD 21292 absabv 21341 cnmet 24659 cnbl0 24661 cnblcld 24662 cnfldms 24663 cnfldnm 24666 abscncf 24794 cnfldcusp 25257 ovolfsf 25372 ovolctb 25391 iblabslem 25729 iblabs 25730 bddmulibl 25740 dvlip2 25900 c1liplem1 25901 pserulm 26331 psercn2 26332 psercn2OLD 26333 psercnlem2 26334 psercnlem1 26335 psercn 26336 pserdvlem1 26337 pserdvlem2 26338 pserdv 26339 pserdv2 26340 abelth 26351 efif1olem3 26453 efif1olem4 26454 efifo 26456 eff1olem 26457 logcn 26556 efopnlem1 26565 logtayl 26569 cnnv 30606 cnnvg 30607 cnnvs 30609 cnnvnm 30610 cncph 30748 mblfinlem2 37652 ftc1anclem1 37687 ftc1anclem2 37688 ftc1anclem3 37689 ftc1anclem4 37690 ftc1anclem5 37691 ftc1anclem6 37692 ftc1anclem7 37693 ftc1anclem8 37694 ftc1anc 37695 absex 42236 extoimad 44153 imo72b2lem0 44154 imo72b2lem2 44156 imo72b2lem1 44158 imo72b2 44161 sblpnf 44299 binomcxplemdvbinom 44342 binomcxplemcvg 44343 binomcxplemdvsum 44344 binomcxplemnotnn0 44345 absfun 45346 cncficcgt0 45886 fourierdlem42 46147 hoicvr 46546 ovolval2lem 46641 ovolval3 46645 |
| Copyright terms: Public domain | W3C validator |