| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absf | Structured version Visualization version GIF version | ||
| Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| absf | ⊢ abs:ℂ⟶ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abs 15209 | . 2 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
| 2 | absval 15211 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) = (√‘(𝑥 · (∗‘𝑥)))) | |
| 3 | abscl 15251 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
| 4 | 2, 3 | eqeltrrd 2830 | . 2 ⊢ (𝑥 ∈ ℂ → (√‘(𝑥 · (∗‘𝑥))) ∈ ℝ) |
| 5 | 1, 4 | fmpti 7087 | 1 ⊢ abs:ℂ⟶ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 · cmul 11080 ∗ccj 15069 √csqrt 15206 abscabs 15207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
| This theorem is referenced by: lo1o1 15505 lo1o12 15506 abscn2 15572 climabs 15577 rlimabs 15582 cnfldds 21283 cnfldfun 21285 cnfldfunALT 21286 cnflddsOLD 21296 cnfldfunOLD 21298 cnfldfunALTOLD 21299 absabv 21348 cnmet 24666 cnbl0 24668 cnblcld 24669 cnfldms 24670 cnfldnm 24673 abscncf 24801 cnfldcusp 25264 ovolfsf 25379 ovolctb 25398 iblabslem 25736 iblabs 25737 bddmulibl 25747 dvlip2 25907 c1liplem1 25908 pserulm 26338 psercn2 26339 psercn2OLD 26340 psercnlem2 26341 psercnlem1 26342 psercn 26343 pserdvlem1 26344 pserdvlem2 26345 pserdv 26346 pserdv2 26347 abelth 26358 efif1olem3 26460 efif1olem4 26461 efifo 26463 eff1olem 26464 logcn 26563 efopnlem1 26572 logtayl 26576 cnnv 30613 cnnvg 30614 cnnvs 30616 cnnvnm 30617 cncph 30755 mblfinlem2 37659 ftc1anclem1 37694 ftc1anclem2 37695 ftc1anclem3 37696 ftc1anclem4 37697 ftc1anclem5 37698 ftc1anclem6 37699 ftc1anclem7 37700 ftc1anclem8 37701 ftc1anc 37702 absex 42243 extoimad 44160 imo72b2lem0 44161 imo72b2lem2 44163 imo72b2lem1 44165 imo72b2 44168 sblpnf 44306 binomcxplemdvbinom 44349 binomcxplemcvg 44350 binomcxplemdvsum 44351 binomcxplemnotnn0 44352 absfun 45353 cncficcgt0 45893 fourierdlem42 46154 hoicvr 46553 ovolval2lem 46648 ovolval3 46652 |
| Copyright terms: Public domain | W3C validator |