![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absf | Structured version Visualization version GIF version |
Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
absf | β’ abs:ββΆβ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abs 15181 | . 2 β’ abs = (π₯ β β β¦ (ββ(π₯ Β· (ββπ₯)))) | |
2 | absval 15183 | . . 3 β’ (π₯ β β β (absβπ₯) = (ββ(π₯ Β· (ββπ₯)))) | |
3 | abscl 15223 | . . 3 β’ (π₯ β β β (absβπ₯) β β) | |
4 | 2, 3 | eqeltrrd 2826 | . 2 β’ (π₯ β β β (ββ(π₯ Β· (ββπ₯))) β β) |
5 | 1, 4 | fmpti 7104 | 1 β’ abs:ββΆβ |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2098 βΆwf 6530 βcfv 6534 (class class class)co 7402 βcc 11105 βcr 11106 Β· cmul 11112 βccj 15041 βcsqrt 15178 abscabs 15179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-n0 12471 df-z 12557 df-uz 12821 df-rp 12973 df-seq 13965 df-exp 14026 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 |
This theorem is referenced by: lo1o1 15474 lo1o12 15475 abscn2 15541 climabs 15546 rlimabs 15551 cnfldds 21240 cnfldfun 21242 cnfldfunALT 21243 cnfldfunALTOLD 21244 absabv 21288 cnmet 24612 cnbl0 24614 cnblcld 24615 cnfldms 24616 cnfldnm 24619 abscncf 24745 cnfldcusp 25209 ovolfsf 25324 ovolctb 25343 iblabslem 25681 iblabs 25682 bddmulibl 25692 dvlip2 25852 c1liplem1 25853 pserulm 26277 psercn2 26278 psercn2OLD 26279 psercnlem2 26280 psercnlem1 26281 psercn 26282 pserdvlem1 26283 pserdvlem2 26284 pserdv 26285 pserdv2 26286 abelth 26297 efif1olem3 26397 efif1olem4 26398 efifo 26400 eff1olem 26401 logcn 26500 efopnlem1 26509 logtayl 26513 cnnv 30402 cnnvg 30403 cnnvs 30405 cnnvnm 30406 cncph 30544 gg-cnfldds 35669 gg-cnfldfun 35671 gg-cnfldfunALT 35672 mblfinlem2 37020 ftc1anclem1 37055 ftc1anclem2 37056 ftc1anclem3 37057 ftc1anclem4 37058 ftc1anclem5 37059 ftc1anclem6 37060 ftc1anclem7 37061 ftc1anclem8 37062 ftc1anc 37063 extoimad 43430 imo72b2lem0 43431 imo72b2lem2 43433 imo72b2lem1 43435 imo72b2 43438 sblpnf 43583 binomcxplemdvbinom 43626 binomcxplemcvg 43627 binomcxplemdvsum 43628 binomcxplemnotnn0 43629 absfun 44570 cncficcgt0 45114 fourierdlem42 45375 hoicvr 45774 ovolval2lem 45869 ovolval3 45873 |
Copyright terms: Public domain | W3C validator |