Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absf | Structured version Visualization version GIF version |
Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
absf | ⊢ abs:ℂ⟶ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abs 14947 | . 2 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
2 | absval 14949 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) = (√‘(𝑥 · (∗‘𝑥)))) | |
3 | abscl 14990 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
4 | 2, 3 | eqeltrrd 2840 | . 2 ⊢ (𝑥 ∈ ℂ → (√‘(𝑥 · (∗‘𝑥))) ∈ ℝ) |
5 | 1, 4 | fmpti 6986 | 1 ⊢ abs:ℂ⟶ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 · cmul 10876 ∗ccj 14807 √csqrt 14944 abscabs 14945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 |
This theorem is referenced by: lo1o1 15241 lo1o12 15242 abscn2 15308 climabs 15313 rlimabs 15318 cnfldds 20607 cnfldfun 20609 cnfldfunALT 20610 cnfldfunALTOLD 20611 absabv 20655 cnmet 23935 cnbl0 23937 cnblcld 23938 cnfldms 23939 cnfldnm 23942 abscncf 24064 cnfldcusp 24521 ovolfsf 24635 ovolctb 24654 iblabslem 24992 iblabs 24993 bddmulibl 25003 dvlip2 25159 c1liplem1 25160 pserulm 25581 psercn2 25582 psercnlem2 25583 psercnlem1 25584 psercn 25585 pserdvlem1 25586 pserdvlem2 25587 pserdv 25588 pserdv2 25589 abelth 25600 efif1olem3 25700 efif1olem4 25701 efifo 25703 eff1olem 25704 logcn 25802 efopnlem1 25811 logtayl 25815 cnnv 29039 cnnvg 29040 cnnvs 29042 cnnvnm 29043 cncph 29181 mblfinlem2 35815 ftc1anclem1 35850 ftc1anclem2 35851 ftc1anclem3 35852 ftc1anclem4 35853 ftc1anclem5 35854 ftc1anclem6 35855 ftc1anclem7 35856 ftc1anclem8 35857 ftc1anc 35858 extoimad 41775 imo72b2lem0 41776 imo72b2lem2 41778 imo72b2lem1 41780 imo72b2 41783 sblpnf 41928 binomcxplemdvbinom 41971 binomcxplemcvg 41972 binomcxplemdvsum 41973 binomcxplemnotnn0 41974 absfun 42889 cncficcgt0 43429 fourierdlem42 43690 hoicvr 44086 ovolval2lem 44181 ovolval3 44185 |
Copyright terms: Public domain | W3C validator |