| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absf | Structured version Visualization version GIF version | ||
| Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| absf | ⊢ abs:ℂ⟶ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abs 15178 | . 2 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
| 2 | absval 15180 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) = (√‘(𝑥 · (∗‘𝑥)))) | |
| 3 | abscl 15220 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
| 4 | 2, 3 | eqeltrrd 2829 | . 2 ⊢ (𝑥 ∈ ℂ → (√‘(𝑥 · (∗‘𝑥))) ∈ ℝ) |
| 5 | 1, 4 | fmpti 7066 | 1 ⊢ abs:ℂ⟶ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 · cmul 11049 ∗ccj 15038 √csqrt 15175 abscabs 15176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 |
| This theorem is referenced by: lo1o1 15474 lo1o12 15475 abscn2 15541 climabs 15546 rlimabs 15551 cnfldds 21308 cnfldfun 21310 cnfldfunALT 21311 cnflddsOLD 21321 cnfldfunOLD 21323 cnfldfunALTOLD 21324 absabv 21366 cnmet 24692 cnbl0 24694 cnblcld 24695 cnfldms 24696 cnfldnm 24699 abscncf 24827 cnfldcusp 25290 ovolfsf 25405 ovolctb 25424 iblabslem 25762 iblabs 25763 bddmulibl 25773 dvlip2 25933 c1liplem1 25934 pserulm 26364 psercn2 26365 psercn2OLD 26366 psercnlem2 26367 psercnlem1 26368 psercn 26369 pserdvlem1 26370 pserdvlem2 26371 pserdv 26372 pserdv2 26373 abelth 26384 efif1olem3 26486 efif1olem4 26487 efifo 26489 eff1olem 26490 logcn 26589 efopnlem1 26598 logtayl 26602 cnnv 30656 cnnvg 30657 cnnvs 30659 cnnvnm 30660 cncph 30798 mblfinlem2 37645 ftc1anclem1 37680 ftc1anclem2 37681 ftc1anclem3 37682 ftc1anclem4 37683 ftc1anclem5 37684 ftc1anclem6 37685 ftc1anclem7 37686 ftc1anclem8 37687 ftc1anc 37688 absex 42229 extoimad 44146 imo72b2lem0 44147 imo72b2lem2 44149 imo72b2lem1 44151 imo72b2 44154 sblpnf 44292 binomcxplemdvbinom 44335 binomcxplemcvg 44336 binomcxplemdvsum 44337 binomcxplemnotnn0 44338 absfun 45339 cncficcgt0 45879 fourierdlem42 46140 hoicvr 46539 ovolval2lem 46634 ovolval3 46638 |
| Copyright terms: Public domain | W3C validator |