| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absf | Structured version Visualization version GIF version | ||
| Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| absf | ⊢ abs:ℂ⟶ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abs 15255 | . 2 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
| 2 | absval 15257 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) = (√‘(𝑥 · (∗‘𝑥)))) | |
| 3 | abscl 15297 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
| 4 | 2, 3 | eqeltrrd 2835 | . 2 ⊢ (𝑥 ∈ ℂ → (√‘(𝑥 · (∗‘𝑥))) ∈ ℝ) |
| 5 | 1, 4 | fmpti 7102 | 1 ⊢ abs:ℂ⟶ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 · cmul 11134 ∗ccj 15115 √csqrt 15252 abscabs 15253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 |
| This theorem is referenced by: lo1o1 15548 lo1o12 15549 abscn2 15615 climabs 15620 rlimabs 15625 cnfldds 21327 cnfldfun 21329 cnfldfunALT 21330 cnflddsOLD 21340 cnfldfunOLD 21342 cnfldfunALTOLD 21343 absabv 21392 cnmet 24710 cnbl0 24712 cnblcld 24713 cnfldms 24714 cnfldnm 24717 abscncf 24845 cnfldcusp 25309 ovolfsf 25424 ovolctb 25443 iblabslem 25781 iblabs 25782 bddmulibl 25792 dvlip2 25952 c1liplem1 25953 pserulm 26383 psercn2 26384 psercn2OLD 26385 psercnlem2 26386 psercnlem1 26387 psercn 26388 pserdvlem1 26389 pserdvlem2 26390 pserdv 26391 pserdv2 26392 abelth 26403 efif1olem3 26505 efif1olem4 26506 efifo 26508 eff1olem 26509 logcn 26608 efopnlem1 26617 logtayl 26621 cnnv 30658 cnnvg 30659 cnnvs 30661 cnnvnm 30662 cncph 30800 mblfinlem2 37682 ftc1anclem1 37717 ftc1anclem2 37718 ftc1anclem3 37719 ftc1anclem4 37720 ftc1anclem5 37721 ftc1anclem6 37722 ftc1anclem7 37723 ftc1anclem8 37724 ftc1anc 37725 absex 42299 extoimad 44188 imo72b2lem0 44189 imo72b2lem2 44191 imo72b2lem1 44193 imo72b2 44196 sblpnf 44334 binomcxplemdvbinom 44377 binomcxplemcvg 44378 binomcxplemdvsum 44379 binomcxplemnotnn0 44380 absfun 45377 cncficcgt0 45917 fourierdlem42 46178 hoicvr 46577 ovolval2lem 46672 ovolval3 46676 |
| Copyright terms: Public domain | W3C validator |