| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absf | Structured version Visualization version GIF version | ||
| Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| absf | ⊢ abs:ℂ⟶ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abs 15143 | . 2 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
| 2 | absval 15145 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) = (√‘(𝑥 · (∗‘𝑥)))) | |
| 3 | abscl 15185 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
| 4 | 2, 3 | eqeltrrd 2829 | . 2 ⊢ (𝑥 ∈ ℂ → (√‘(𝑥 · (∗‘𝑥))) ∈ ℝ) |
| 5 | 1, 4 | fmpti 7046 | 1 ⊢ abs:ℂ⟶ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 · cmul 11014 ∗ccj 15003 √csqrt 15140 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: lo1o1 15439 lo1o12 15440 abscn2 15506 climabs 15511 rlimabs 15516 cnfldds 21273 cnfldfun 21275 cnfldfunALT 21276 cnflddsOLD 21286 cnfldfunOLD 21288 cnfldfunALTOLD 21289 absabv 21331 cnmet 24657 cnbl0 24659 cnblcld 24660 cnfldms 24661 cnfldnm 24664 abscncf 24792 cnfldcusp 25255 ovolfsf 25370 ovolctb 25389 iblabslem 25727 iblabs 25728 bddmulibl 25738 dvlip2 25898 c1liplem1 25899 pserulm 26329 psercn2 26330 psercn2OLD 26331 psercnlem2 26332 psercnlem1 26333 psercn 26334 pserdvlem1 26335 pserdvlem2 26336 pserdv 26337 pserdv2 26338 abelth 26349 efif1olem3 26451 efif1olem4 26452 efifo 26454 eff1olem 26455 logcn 26554 efopnlem1 26563 logtayl 26567 cnnv 30621 cnnvg 30622 cnnvs 30624 cnnvnm 30625 cncph 30763 mblfinlem2 37642 ftc1anclem1 37677 ftc1anclem2 37678 ftc1anclem3 37679 ftc1anclem4 37680 ftc1anclem5 37681 ftc1anclem6 37682 ftc1anclem7 37683 ftc1anclem8 37684 ftc1anc 37685 absex 42225 extoimad 44141 imo72b2lem0 44142 imo72b2lem2 44144 imo72b2lem1 44146 imo72b2 44149 sblpnf 44287 binomcxplemdvbinom 44330 binomcxplemcvg 44331 binomcxplemdvsum 44332 binomcxplemnotnn0 44333 absfun 45334 cncficcgt0 45873 fourierdlem42 46134 hoicvr 46533 ovolval2lem 46628 ovolval3 46632 |
| Copyright terms: Public domain | W3C validator |