MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absf Structured version   Visualization version   GIF version

Theorem absf 15049
Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absf abs:ℂ⟶ℝ

Proof of Theorem absf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-abs 14947 . 2 abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
2 absval 14949 . . 3 (𝑥 ∈ ℂ → (abs‘𝑥) = (√‘(𝑥 · (∗‘𝑥))))
3 abscl 14990 . . 3 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
42, 3eqeltrrd 2840 . 2 (𝑥 ∈ ℂ → (√‘(𝑥 · (∗‘𝑥))) ∈ ℝ)
51, 4fmpti 6986 1 abs:ℂ⟶ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870   · cmul 10876  ccj 14807  csqrt 14944  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  lo1o1  15241  lo1o12  15242  abscn2  15308  climabs  15313  rlimabs  15318  cnfldds  20607  cnfldfun  20609  cnfldfunALT  20610  cnfldfunALTOLD  20611  absabv  20655  cnmet  23935  cnbl0  23937  cnblcld  23938  cnfldms  23939  cnfldnm  23942  abscncf  24064  cnfldcusp  24521  ovolfsf  24635  ovolctb  24654  iblabslem  24992  iblabs  24993  bddmulibl  25003  dvlip2  25159  c1liplem1  25160  pserulm  25581  psercn2  25582  psercnlem2  25583  psercnlem1  25584  psercn  25585  pserdvlem1  25586  pserdvlem2  25587  pserdv  25588  pserdv2  25589  abelth  25600  efif1olem3  25700  efif1olem4  25701  efifo  25703  eff1olem  25704  logcn  25802  efopnlem1  25811  logtayl  25815  cnnv  29039  cnnvg  29040  cnnvs  29042  cnnvnm  29043  cncph  29181  mblfinlem2  35815  ftc1anclem1  35850  ftc1anclem2  35851  ftc1anclem3  35852  ftc1anclem4  35853  ftc1anclem5  35854  ftc1anclem6  35855  ftc1anclem7  35856  ftc1anclem8  35857  ftc1anc  35858  extoimad  41775  imo72b2lem0  41776  imo72b2lem2  41778  imo72b2lem1  41780  imo72b2  41783  sblpnf  41928  binomcxplemdvbinom  41971  binomcxplemcvg  41972  binomcxplemdvsum  41973  binomcxplemnotnn0  41974  absfun  42889  cncficcgt0  43429  fourierdlem42  43690  hoicvr  44086  ovolval2lem  44181  ovolval3  44185
  Copyright terms: Public domain W3C validator