MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-aleph Structured version   Visualization version   GIF version

Definition df-aleph 9698
Description: Define the aleph function. Our definition expresses Definition 12 of [Suppes] p. 229 in a closed form, from which we derive the recursive definition as Theorems aleph0 9822, alephsuc 9824, and alephlim 9823. The aleph function provides a one-to-one, onto mapping from the ordinal numbers to the infinite cardinal numbers. Roughly, any aleph is the smallest infinite cardinal number whose size is strictly greater than any aleph before it. (Contributed by NM, 21-Oct-2003.)
Assertion
Ref Expression
df-aleph ℵ = rec(har, ω)

Detailed syntax breakdown of Definition df-aleph
StepHypRef Expression
1 cale 9694 . 2 class
2 char 9315 . . 3 class har
3 com 7712 . . 3 class ω
42, 3crdg 8240 . 2 class rec(har, ω)
51, 4wceq 1539 1 wff ℵ = rec(har, ω)
Colors of variables: wff setvar class
This definition is referenced by:  alephfnon  9821  aleph0  9822  alephlim  9823  alephsuc  9824
  Copyright terms: Public domain W3C validator