| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephlim | Structured version Visualization version GIF version | ||
| Description: Value of the aleph function at a limit ordinal. Definition 12(iii) of [Suppes] p. 91. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| alephlim | ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (ℵ‘𝐴) = ∪ 𝑥 ∈ 𝐴 (ℵ‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdglim2a 8347 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (rec(har, ω)‘𝐴) = ∪ 𝑥 ∈ 𝐴 (rec(har, ω)‘𝑥)) | |
| 2 | df-aleph 9825 | . . 3 ⊢ ℵ = rec(har, ω) | |
| 3 | 2 | fveq1i 6818 | . 2 ⊢ (ℵ‘𝐴) = (rec(har, ω)‘𝐴) |
| 4 | 2 | fveq1i 6818 | . . . 4 ⊢ (ℵ‘𝑥) = (rec(har, ω)‘𝑥) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (ℵ‘𝑥) = (rec(har, ω)‘𝑥)) |
| 6 | 5 | iuneq2i 4961 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (ℵ‘𝑥) = ∪ 𝑥 ∈ 𝐴 (rec(har, ω)‘𝑥) |
| 7 | 1, 3, 6 | 3eqtr4g 2790 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (ℵ‘𝐴) = ∪ 𝑥 ∈ 𝐴 (ℵ‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∪ ciun 4939 Lim wlim 6303 ‘cfv 6477 ωcom 7791 reccrdg 8323 harchar 9437 ℵcale 9821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-aleph 9825 |
| This theorem is referenced by: alephon 9952 alephcard 9953 alephordi 9957 cardaleph 9972 alephsing 10159 pwcfsdom 10466 |
| Copyright terms: Public domain | W3C validator |