![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephlim | Structured version Visualization version GIF version |
Description: Value of the aleph function at a limit ordinal. Definition 12(iii) of [Suppes] p. 91. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
alephlim | ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (ℵ‘𝐴) = ∪ 𝑥 ∈ 𝐴 (ℵ‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdglim2a 8434 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (rec(har, ω)‘𝐴) = ∪ 𝑥 ∈ 𝐴 (rec(har, ω)‘𝑥)) | |
2 | df-aleph 9937 | . . 3 ⊢ ℵ = rec(har, ω) | |
3 | 2 | fveq1i 6886 | . 2 ⊢ (ℵ‘𝐴) = (rec(har, ω)‘𝐴) |
4 | 2 | fveq1i 6886 | . . . 4 ⊢ (ℵ‘𝑥) = (rec(har, ω)‘𝑥) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (ℵ‘𝑥) = (rec(har, ω)‘𝑥)) |
6 | 5 | iuneq2i 5011 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (ℵ‘𝑥) = ∪ 𝑥 ∈ 𝐴 (rec(har, ω)‘𝑥) |
7 | 1, 3, 6 | 3eqtr4g 2791 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (ℵ‘𝐴) = ∪ 𝑥 ∈ 𝐴 (ℵ‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∪ ciun 4990 Lim wlim 6359 ‘cfv 6537 ωcom 7852 reccrdg 8410 harchar 9553 ℵcale 9933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-aleph 9937 |
This theorem is referenced by: alephon 10066 alephcard 10067 alephordi 10071 cardaleph 10086 alephsing 10273 pwcfsdom 10580 |
Copyright terms: Public domain | W3C validator |