MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleph0 Structured version   Visualization version   GIF version

Theorem aleph0 9481
Description: The first infinite cardinal number, discovered by Georg Cantor in 1873, has the same size as the set of natural numbers ω (and under our particular definition is also equal to it). In the literature, the argument of the aleph function is often written as a subscript, and the first aleph is written 0. Exercise 3 of [TakeutiZaring] p. 91. Also Definition 12(i) of [Suppes] p. 228. From Moshé Machover, Set Theory, Logic, and Their Limitations, p. 95: "Aleph...the first letter in the Hebrew alphabet...is also the first letter of the Hebrew word...(einsoph, meaning infinity), which is a cabbalistic appellation of the deity. The notation is due to Cantor, who was deeply interested in mysticism." (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
aleph0 (ℵ‘∅) = ω

Proof of Theorem aleph0
StepHypRef Expression
1 df-aleph 9358 . . 3 ℵ = rec(har, ω)
21fveq1i 6668 . 2 (ℵ‘∅) = (rec(har, ω)‘∅)
3 omex 9095 . . 3 ω ∈ V
43rdg0 8048 . 2 (rec(har, ω)‘∅) = ω
52, 4eqtri 2849 1 (ℵ‘∅) = ω
Colors of variables: wff setvar class
Syntax hints:   = wceq 1530  c0 4295  cfv 6352  ωcom 7568  reccrdg 8036  harchar 9009  cale 9354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-aleph 9358
This theorem is referenced by:  alephon  9484  alephcard  9485  alephgeom  9497  cardaleph  9504  alephfplem1  9519  pwcfsdom  9994  alephom  9996  winalim2  10107  aleph1re  15588  aleph1min  39784
  Copyright terms: Public domain W3C validator