| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aleph0 | Structured version Visualization version GIF version | ||
| Description: The first infinite cardinal number, discovered by Georg Cantor in 1873, has the same size as the set of natural numbers ω (and under our particular definition is also equal to it). In the literature, the argument of the aleph function is often written as a subscript, and the first aleph is written ℵ0. Exercise 3 of [TakeutiZaring] p. 91. Also Definition 12(i) of [Suppes] p. 228. From Moshé Machover, Set Theory, Logic, and Their Limitations, p. 95: "Aleph ... the first letter in the Hebrew alphabet ... is also the first letter of the Hebrew word ... (einsoph, meaning infinity), which is a cabbalistic appellation of the deity. The notation is due to Cantor, who was deeply interested in mysticism." (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| aleph0 | ⊢ (ℵ‘∅) = ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-aleph 9954 | . . 3 ⊢ ℵ = rec(har, ω) | |
| 2 | 1 | fveq1i 6877 | . 2 ⊢ (ℵ‘∅) = (rec(har, ω)‘∅) |
| 3 | omex 9657 | . . 3 ⊢ ω ∈ V | |
| 4 | 3 | rdg0 8435 | . 2 ⊢ (rec(har, ω)‘∅) = ω |
| 5 | 2, 4 | eqtri 2758 | 1 ⊢ (ℵ‘∅) = ω |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4308 ‘cfv 6531 ωcom 7861 reccrdg 8423 harchar 9570 ℵcale 9950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-aleph 9954 |
| This theorem is referenced by: alephon 10083 alephcard 10084 alephgeom 10096 cardaleph 10103 alephfplem1 10118 pwcfsdom 10597 alephom 10599 winalim2 10710 aleph1re 16263 aleph1min 43581 |
| Copyright terms: Public domain | W3C validator |