| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aleph0 | Structured version Visualization version GIF version | ||
| Description: The first infinite cardinal number, discovered by Georg Cantor in 1873, has the same size as the set of natural numbers ω (and under our particular definition is also equal to it). In the literature, the argument of the aleph function is often written as a subscript, and the first aleph is written ℵ0. Exercise 3 of [TakeutiZaring] p. 91. Also Definition 12(i) of [Suppes] p. 228. From Moshé Machover, Set Theory, Logic, and Their Limitations, p. 95: "Aleph ... the first letter in the Hebrew alphabet ... is also the first letter of the Hebrew word ... (einsoph, meaning infinity), which is a cabbalistic appellation of the deity. The notation is due to Cantor, who was deeply interested in mysticism." (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| aleph0 | ⊢ (ℵ‘∅) = ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-aleph 9839 | . . 3 ⊢ ℵ = rec(har, ω) | |
| 2 | 1 | fveq1i 6829 | . 2 ⊢ (ℵ‘∅) = (rec(har, ω)‘∅) |
| 3 | omex 9539 | . . 3 ⊢ ω ∈ V | |
| 4 | 3 | rdg0 8346 | . 2 ⊢ (rec(har, ω)‘∅) = ω |
| 5 | 2, 4 | eqtri 2754 | 1 ⊢ (ℵ‘∅) = ω |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4282 ‘cfv 6487 ωcom 7802 reccrdg 8334 harchar 9448 ℵcale 9835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-aleph 9839 |
| This theorem is referenced by: alephon 9966 alephcard 9967 alephgeom 9979 cardaleph 9986 alephfplem1 10001 pwcfsdom 10480 alephom 10482 winalim2 10593 aleph1re 16160 aleph1min 43655 |
| Copyright terms: Public domain | W3C validator |