MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsuc Structured version   Visualization version   GIF version

Theorem alephsuc 10063
Description: Value of the aleph function at a successor ordinal. Definition 12(ii) of [Suppes] p. 91. Here we express the successor aleph in terms of the Hartogs function df-har 9552, which gives the smallest ordinal that strictly dominates its argument (or the supremum of all ordinals that are dominated by the argument). (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephsuc (𝐴 ∈ On β†’ (β„΅β€˜suc 𝐴) = (harβ€˜(β„΅β€˜π΄)))

Proof of Theorem alephsuc
StepHypRef Expression
1 rdgsuc 8424 . 2 (𝐴 ∈ On β†’ (rec(har, Ο‰)β€˜suc 𝐴) = (harβ€˜(rec(har, Ο‰)β€˜π΄)))
2 df-aleph 9935 . . 3 β„΅ = rec(har, Ο‰)
32fveq1i 6893 . 2 (β„΅β€˜suc 𝐴) = (rec(har, Ο‰)β€˜suc 𝐴)
42fveq1i 6893 . . 3 (β„΅β€˜π΄) = (rec(har, Ο‰)β€˜π΄)
54fveq2i 6895 . 2 (harβ€˜(β„΅β€˜π΄)) = (harβ€˜(rec(har, Ο‰)β€˜π΄))
61, 3, 53eqtr4g 2798 1 (𝐴 ∈ On β†’ (β„΅β€˜suc 𝐴) = (harβ€˜(β„΅β€˜π΄)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  Oncon0 6365  suc csuc 6367  β€˜cfv 6544  Ο‰com 7855  reccrdg 8409  harchar 9551  β„΅cale 9931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-aleph 9935
This theorem is referenced by:  alephon  10064  alephcard  10065  alephnbtwn  10066  alephordilem1  10068  cardaleph  10084  gchaleph2  10667  aleph1min  42308
  Copyright terms: Public domain W3C validator