MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsuc Structured version   Visualization version   GIF version

Theorem alephsuc 9682
Description: Value of the aleph function at a successor ordinal. Definition 12(ii) of [Suppes] p. 91. Here we express the successor aleph in terms of the Hartogs function df-har 9173, which gives the smallest ordinal that strictly dominates its argument (or the supremum of all ordinals that are dominated by the argument). (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephsuc (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴)))

Proof of Theorem alephsuc
StepHypRef Expression
1 rdgsuc 8160 . 2 (𝐴 ∈ On → (rec(har, ω)‘suc 𝐴) = (har‘(rec(har, ω)‘𝐴)))
2 df-aleph 9556 . . 3 ℵ = rec(har, ω)
32fveq1i 6718 . 2 (ℵ‘suc 𝐴) = (rec(har, ω)‘suc 𝐴)
42fveq1i 6718 . . 3 (ℵ‘𝐴) = (rec(har, ω)‘𝐴)
54fveq2i 6720 . 2 (har‘(ℵ‘𝐴)) = (har‘(rec(har, ω)‘𝐴))
61, 3, 53eqtr4g 2803 1 (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  Oncon0 6213  suc csuc 6215  cfv 6380  ωcom 7644  reccrdg 8145  harchar 9172  cale 9552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-aleph 9556
This theorem is referenced by:  alephon  9683  alephcard  9684  alephnbtwn  9685  alephordilem1  9687  cardaleph  9703  gchaleph2  10286  aleph1min  40840
  Copyright terms: Public domain W3C validator