MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsuc Structured version   Visualization version   GIF version

Theorem alephsuc 9343
Description: Value of the aleph function at a successor ordinal. Definition 12(ii) of [Suppes] p. 91. Here we express the successor aleph in terms of the Hartogs function df-har 8871, which gives the smallest ordinal that strictly dominates its argument (or the supremum of all ordinals that are dominated by the argument). (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephsuc (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴)))

Proof of Theorem alephsuc
StepHypRef Expression
1 rdgsuc 7915 . 2 (𝐴 ∈ On → (rec(har, ω)‘suc 𝐴) = (har‘(rec(har, ω)‘𝐴)))
2 df-aleph 9218 . . 3 ℵ = rec(har, ω)
32fveq1i 6542 . 2 (ℵ‘suc 𝐴) = (rec(har, ω)‘suc 𝐴)
42fveq1i 6542 . . 3 (ℵ‘𝐴) = (rec(har, ω)‘𝐴)
54fveq2i 6544 . 2 (har‘(ℵ‘𝐴)) = (har‘(rec(har, ω)‘𝐴))
61, 3, 53eqtr4g 2855 1 (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  wcel 2080  Oncon0 6069  suc csuc 6071  cfv 6228  ωcom 7439  reccrdg 7900  harchar 8869  cale 9214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-reu 3111  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-aleph 9218
This theorem is referenced by:  alephon  9344  alephcard  9345  alephnbtwn  9346  alephordilem1  9348  cardaleph  9364  gchaleph2  9943  aleph1min  39414
  Copyright terms: Public domain W3C validator