MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsuc Structured version   Visualization version   GIF version

Theorem alephsuc 10028
Description: Value of the aleph function at a successor ordinal. Definition 12(ii) of [Suppes] p. 91. Here we express the successor aleph in terms of the Hartogs function df-har 9517, which gives the smallest ordinal that strictly dominates its argument (or the supremum of all ordinals that are dominated by the argument). (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephsuc (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴)))

Proof of Theorem alephsuc
StepHypRef Expression
1 rdgsuc 8395 . 2 (𝐴 ∈ On → (rec(har, ω)‘suc 𝐴) = (har‘(rec(har, ω)‘𝐴)))
2 df-aleph 9900 . . 3 ℵ = rec(har, ω)
32fveq1i 6862 . 2 (ℵ‘suc 𝐴) = (rec(har, ω)‘suc 𝐴)
42fveq1i 6862 . . 3 (ℵ‘𝐴) = (rec(har, ω)‘𝐴)
54fveq2i 6864 . 2 (har‘(ℵ‘𝐴)) = (har‘(rec(har, ω)‘𝐴))
61, 3, 53eqtr4g 2790 1 (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Oncon0 6335  suc csuc 6337  cfv 6514  ωcom 7845  reccrdg 8380  harchar 9516  cale 9896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-aleph 9900
This theorem is referenced by:  alephon  10029  alephcard  10030  alephnbtwn  10031  alephordilem1  10033  cardaleph  10049  gchaleph2  10632  aleph1min  43553
  Copyright terms: Public domain W3C validator