![]() |
Metamath
Proof Explorer Theorem List (p. 100 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rankr1b 9901 | A relationship between rank and 𝑅1. See rankr1a 9873 for the membership version. (Contributed by NM, 15-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ On → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) | ||
Theorem | ranksuc 9902 | The rank of a successor. (Contributed by NM, 18-Sep-2006.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘suc 𝐴) = suc (rank‘𝐴) | ||
Theorem | rankuniss 9903 | Upper bound of the rank of a union. Part of Exercise 30 of [Enderton] p. 207. (Contributed by NM, 30-Nov-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘∪ 𝐴) ⊆ (rank‘𝐴) | ||
Theorem | rankval4 9904* | The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of [Jech] p. 72. Also a special case of Theorem 7V(b) of [Enderton] p. 204. (Contributed by NM, 12-Oct-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘𝐴) = ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) | ||
Theorem | rankbnd 9905* | The rank of a set is bounded by a bound for the successor of its members. (Contributed by NM, 18-Sep-2006.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ 𝐵) | ||
Theorem | rankbnd2 9906* | The rank of a set is bounded by the successor of a bound for its members. (Contributed by NM, 15-Sep-2006.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ On → (∀𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵)) | ||
Theorem | rankc1 9907* | A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ (rank‘𝐴) = (rank‘∪ 𝐴)) | ||
Theorem | rankc2 9908* | A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) | ||
Theorem | rankelun 9909 | Rank membership is inherited by union. (Contributed by NM, 18-Sep-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴 ∪ 𝐵)) ∈ (rank‘(𝐶 ∪ 𝐷))) | ||
Theorem | rankelpr 9910 | Rank membership is inherited by unordered pairs. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷})) | ||
Theorem | rankelop 9911 | Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘〈𝐴, 𝐵〉) ∈ (rank‘〈𝐶, 𝐷〉)) | ||
Theorem | rankxpl 9912 | A lower bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴 ∪ 𝐵)) ⊆ (rank‘(𝐴 × 𝐵))) | ||
Theorem | rankxpu 9913 | An upper bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (rank‘(𝐴 × 𝐵)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) | ||
Theorem | rankfu 9914 | An upper bound on the rank of a function. (Contributed by Gérard Lang, 5-Aug-2018.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴⟶𝐵 → (rank‘𝐹) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵))) | ||
Theorem | rankmapu 9915 | An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) | ||
Theorem | rankxplim 9916 | The rank of a Cartesian product when the rank of the union of its arguments is a limit ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxpsuc 9919 for the successor case. (Contributed by NM, 19-Sep-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Lim (rank‘(𝐴 ∪ 𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 ∪ 𝐵))) | ||
Theorem | rankxplim2 9917 | If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 ∪ 𝐵))) | ||
Theorem | rankxplim3 9918 | The rank of a Cartesian product is a limit ordinal iff its union is. (Contributed by NM, 19-Sep-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (Lim (rank‘(𝐴 × 𝐵)) ↔ Lim ∪ (rank‘(𝐴 × 𝐵))) | ||
Theorem | rankxpsuc 9919 | The rank of a Cartesian product when the rank of the union of its arguments is a successor ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxplim 9916 for the limit ordinal case. (Contributed by NM, 19-Sep-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (((rank‘(𝐴 ∪ 𝐵)) = suc 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) = suc suc (rank‘(𝐴 ∪ 𝐵))) | ||
Theorem | tcwf 9920 | The transitive closure function is well-founded if its argument is. (Contributed by Mario Carneiro, 23-Jun-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (TC‘𝐴) ∈ ∪ (𝑅1 “ On)) | ||
Theorem | tcrank 9921 | This theorem expresses two different facts from the two subset implications in this equality. In the forward direction, it says that the transitive closure has members of every rank below 𝐴. Stated another way, to construct a set at a given rank, you have to climb the entire hierarchy of ordinals below (rank‘𝐴), constructing at least one set at each level in order to move up the ranks. In the reverse direction, it says that every member of (TC‘𝐴) has a rank below the rank of 𝐴, since intuitively it contains only the members of 𝐴 and the members of those and so on, but nothing "bigger" than 𝐴. (Contributed by Mario Carneiro, 23-Jun-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = (rank “ (TC‘𝐴))) | ||
Theorem | scottex 9922* | Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, is a set. (Contributed by NM, 13-Oct-2003.) |
⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V | ||
Theorem | scott0 9923* | Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, contains at least one representative with the property, if there is one. In other words, the collection is empty iff no set has the property (i.e. 𝐴 is empty). (Contributed by NM, 15-Oct-2003.) |
⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) | ||
Theorem | scottexs 9924* | Theorem scheme version of scottex 9922. The collection of all 𝑥 of minimum rank such that 𝜑(𝑥) is true, is a set. (Contributed by NM, 13-Oct-2003.) |
⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V | ||
Theorem | scott0s 9925* | Theorem scheme version of scott0 9923. The collection of all 𝑥 of minimum rank such that 𝜑(𝑥) is true, is not empty iff there is an 𝑥 such that 𝜑(𝑥) holds. (Contributed by NM, 13-Oct-2003.) |
⊢ (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅) | ||
Theorem | cplem1 9926* | Lemma for the Collection Principle cp 9928. (Contributed by NM, 17-Oct-2003.) |
⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} & ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 ⇒ ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅) | ||
Theorem | cplem2 9927* | Lemma for the Collection Principle cp 9928. (Contributed by NM, 17-Oct-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑦∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) | ||
Theorem | cp 9928* | Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 9922 that collapses a proper class into a set of minimum rank. The wff 𝜑 can be thought of as 𝜑(𝑥, 𝑦). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.) |
⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) | ||
Theorem | bnd 9929* | A very strong generalization of the Axiom of Replacement (compare zfrep6 7977), derived from the Collection Principle cp 9928. Its strength lies in the rather profound fact that 𝜑(𝑥, 𝑦) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. (Contributed by NM, 17-Oct-2004.) |
⊢ (∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) | ||
Theorem | bnd2 9930* | A variant of the Boundedness Axiom bnd 9929 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) | ||
Theorem | kardex 9931* | The collection of all sets equinumerous to a set 𝐴 and having the least possible rank is a set. This is the part of the justification of the definition of kard of [Enderton] p. 222. (Contributed by NM, 14-Dec-2003.) |
⊢ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V | ||
Theorem | karden 9932* | If we allow the Axiom of Regularity, we can avoid the Axiom of Choice by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank. This theorem proves the equinumerosity relationship for this definition (compare carden 10588). The hypotheses correspond to the definition of kard of [Enderton] p. 222 (which we don't define separately since currently we do not use it elsewhere). This theorem along with kardex 9931 justify the definition of kard. The restriction to the least rank prevents the proper class that would result from {𝑥 ∣ 𝑥 ≈ 𝐴}. (Contributed by NM, 18-Dec-2003.) (Revised by AV, 12-Jul-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐶 = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ⇒ ⊢ (𝐶 = 𝐷 ↔ 𝐴 ≈ 𝐵) | ||
Theorem | htalem 9933* | Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional 𝑅 We 𝐴 antecedent. The element 𝐵 is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) | ||
Theorem | hta 9934* |
A ZFC emulation of Hilbert's transfinite axiom. The set 𝐵 has the
properties of Hilbert's epsilon, except that it also depends on a
well-ordering 𝑅. This theorem arose from
discussions with Raph
Levien on 5-Mar-2004 about translating the HOL proof language, which
uses Hilbert's epsilon. See
https://us.metamath.org/downloads/choice.txt
(copy of obsolete link
http://ghilbert.org/choice.txt) and
https://us.metamath.org/downloads/megillaward2005he.pdf.
Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem differs from Hilbert's transfinite axiom described on that page in that it requires 𝑅 We 𝐴 as an antecedent. Class 𝐴 collects the sets of the least rank for which 𝜑(𝑥) is true. Class 𝐵, which emulates Hilbert's epsilon, is the minimum element in a well-ordering 𝑅 on 𝐴. If a well-ordering 𝑅 on 𝐴 can be expressed in a closed form, as might be the case if we are working with say natural numbers, we can eliminate the antecedent with modus ponens, giving us the exact equivalent of Hilbert's transfinite axiom. Otherwise, we replace 𝑅 with a dummy setvar variable, say 𝑤, and attach 𝑤 We 𝐴 as an antecedent in each step of the ZFC version of the HOL proof until the epsilon is eliminated. At that point, 𝐵 (which will have 𝑤 as a free variable) will no longer be present, and we can eliminate 𝑤 We 𝐴 by applying exlimiv 1927 and weth 10532, using scottexs 9924 to establish the existence of 𝐴. For a version of this theorem scheme using class (meta)variables instead of wff (meta)variables, see htalem 9933. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} & ⊢ 𝐵 = (℩𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) ⇒ ⊢ (𝑅 We 𝐴 → (𝜑 → [𝐵 / 𝑥]𝜑)) | ||
Syntax | cdju 9935 | Extend class notation to include disjoint union of two classes. |
class (𝐴 ⊔ 𝐵) | ||
Syntax | cinl 9936 | Extend class notation to include left injection of a disjoint union. |
class inl | ||
Syntax | cinr 9937 | Extend class notation to include right injection of a disjoint union. |
class inr | ||
Definition | df-dju 9938 | Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | ||
Definition | df-inl 9939 | Left injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.) |
⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | ||
Definition | df-inr 9940 | Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.) |
⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | ||
Theorem | djueq12 9941 | Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) | ||
Theorem | djueq1 9942 | Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) | ||
Theorem | djueq2 9943 | Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
⊢ (𝐴 = 𝐵 → (𝐶 ⊔ 𝐴) = (𝐶 ⊔ 𝐵)) | ||
Theorem | nfdju 9944 | Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) | ||
Theorem | djuex 9945 | The disjoint union of sets is a set. For a shorter proof using djuss 9957 see djuexALT 9959. (Contributed by AV, 28-Jun-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | ||
Theorem | djuexb 9946 | The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.) |
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) | ||
Theorem | djulcl 9947 | Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) | ||
Theorem | djurcl 9948 | Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) ∈ (𝐴 ⊔ 𝐵)) | ||
Theorem | djulf1o 9949 | The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
⊢ inl:V–1-1-onto→({∅} × V) | ||
Theorem | djurf1o 9950 | The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
⊢ inr:V–1-1-onto→({1o} × V) | ||
Theorem | inlresf 9951 | The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) | ||
Theorem | inlresf1 9952 | The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022.) |
⊢ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) | ||
Theorem | inrresf 9953 | The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) | ||
Theorem | inrresf1 9954 | The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.) |
⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) | ||
Theorem | djuin 9955 | The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) |
⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ | ||
Theorem | djur 9956* | A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) |
⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) → (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) | ||
Theorem | djuss 9957 | A disjoint union is a subclass of a Cartesian product. (Contributed by AV, 25-Jun-2022.) |
⊢ (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) | ||
Theorem | djuunxp 9958 | The union of a disjoint union and its inversion is the Cartesian product of an unordered pair and the union of the left and right classes of the disjoint unions. (Proposed by GL, 4-Jul-2022.) (Contributed by AV, 4-Jul-2022.) |
⊢ ((𝐴 ⊔ 𝐵) ∪ (𝐵 ⊔ 𝐴)) = ({∅, 1o} × (𝐴 ∪ 𝐵)) | ||
Theorem | djuexALT 9959 | Alternate proof of djuex 9945, which is shorter, but based indirectly on the definitions of inl and inr. (Proposed by BJ, 28-Jun-2022.) (Contributed by AV, 28-Jun-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | ||
Theorem | eldju1st 9960 | The first component of an element of a disjoint union is either ∅ or 1o. (Contributed by AV, 26-Jun-2022.) |
⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) | ||
Theorem | eldju2ndl 9961 | The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.) |
⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) = ∅) → (2nd ‘𝑋) ∈ 𝐴) | ||
Theorem | eldju2ndr 9962 | The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.) |
⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) | ||
Theorem | djuun 9963 | The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) |
⊢ ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴 ⊔ 𝐵) | ||
Theorem | 1stinl 9964 | The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) | ||
Theorem | 2ndinl 9965 | The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋) | ||
Theorem | 1stinr 9966 | The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = 1o) | ||
Theorem | 2ndinr 9967 | The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) | ||
Theorem | updjudhf 9968* | The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) | ||
Theorem | updjudhcoinlf 9969* | The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹) | ||
Theorem | updjudhcoinrg 9970* | The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺) | ||
Theorem | updjud 9971* | Universal property of the disjoint union. This theorem shows that the disjoint union, together with the left and right injections df-inl 9939 and df-inr 9940, is the coproduct in the category of sets, see Wikipedia "Coproduct", https://en.wikipedia.org/wiki/Coproduct 9940 (25-Aug-2023). This is a special case of Example 1 of coproducts in Section 10.67 of [Adamek] p. 185. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∃!ℎ(ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺)) | ||
Syntax | ccrd 9972 | Extend class definition to include the cardinal size function. |
class card | ||
Syntax | cale 9973 | Extend class definition to include the aleph function. |
class ℵ | ||
Syntax | ccf 9974 | Extend class definition to include the cofinality function. |
class cf | ||
Syntax | wacn 9975 | The axiom of choice for limited-length sequences. |
class AC 𝐴 | ||
Definition | df-card 9976* | Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. See cardval 10583 for its value and cardval2 10028 for a simpler version of its value. The principal theorem relating cardinality to equinumerosity is carden 10588. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.) |
⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | ||
Definition | df-aleph 9977 | Define the aleph function. Our definition expresses Definition 12 of [Suppes] p. 229 in a closed form, from which we derive the recursive definition as Theorems aleph0 10103, alephsuc 10105, and alephlim 10104. The aleph function provides a one-to-one, onto mapping from the ordinal numbers to the infinite cardinal numbers. Roughly, any aleph is the smallest infinite cardinal number whose size is strictly greater than any aleph before it. (Contributed by NM, 21-Oct-2003.) |
⊢ ℵ = rec(har, ω) | ||
Definition | df-cf 9978* | Define the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). See cfval 10284 for its value and a description. (Contributed by NM, 1-Apr-2004.) |
⊢ cf = (𝑥 ∈ On ↦ ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢))}) | ||
Definition | df-acn 9979* | Define a local and length-limited version of the axiom of choice. The definition of the predicate 𝑋 ∈ AC 𝐴 is that for all families of nonempty subsets of 𝑋 indexed on 𝐴 (i.e. functions 𝐴⟶𝒫 𝑋 ∖ {∅}), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | ||
Theorem | cardf2 9980* | The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 20-Sep-2014.) |
⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | ||
Theorem | cardon 9981 | The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ (card‘𝐴) ∈ On | ||
Theorem | isnum2 9982* | A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | ||
Theorem | isnumi 9983 | A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) | ||
Theorem | ennum 9984 | Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card)) | ||
Theorem | finnum 9985 | Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | ||
Theorem | onenon 9986 | Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | ||
Theorem | tskwe 9987* | A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card) | ||
Theorem | xpnum 9988 | The cartesian product of numerable sets is numerable. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card) | ||
Theorem | cardval3 9989* | An alternate definition of the value of (card‘𝐴) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | ||
Theorem | cardid2 9990 | Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | ||
Theorem | isnum3 9991 | A set is numerable iff it is equinumerous with its cardinal. (Contributed by Mario Carneiro, 29-Apr-2015.) |
⊢ (𝐴 ∈ dom card ↔ (card‘𝐴) ≈ 𝐴) | ||
Theorem | oncardval 9992* | The value of the cardinal number function with an ordinal number as its argument. Unlike cardval 10583, this theorem does not require the Axiom of Choice. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | ||
Theorem | oncardid 9993 | Any ordinal number is equinumerous to its cardinal number. Unlike cardid 10584, this theorem does not require the Axiom of Choice. (Contributed by NM, 26-Jul-2004.) |
⊢ (𝐴 ∈ On → (card‘𝐴) ≈ 𝐴) | ||
Theorem | cardonle 9994 | The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) |
⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | ||
Theorem | card0 9995 | The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.) |
⊢ (card‘∅) = ∅ | ||
Theorem | cardidm 9996 | The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
⊢ (card‘(card‘𝐴)) = (card‘𝐴) | ||
Theorem | oncard 9997* | A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) | ||
Theorem | ficardom 9998 | The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 4-Feb-2013.) |
⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | ||
Theorem | ficardid 9999 | A finite set is equinumerous to its cardinal number. (Contributed by Mario Carneiro, 21-Sep-2013.) |
⊢ (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴) | ||
Theorem | cardnn 10000 | The cardinality of a natural number is the number. Corollary 10.23 of [TakeutiZaring] p. 90. (Contributed by Mario Carneiro, 7-Jan-2013.) |
⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |