| Metamath
Proof Explorer Theorem List (p. 100 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | infxpenlem 9901* | Lemma for infxpen 9902. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} & ⊢ 𝑅 = {〈𝑧, 𝑤〉 ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) ∈ ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ∨ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ∧ 𝑧𝐿𝑤)))} & ⊢ 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) & ⊢ (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎))) & ⊢ 𝑀 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) & ⊢ 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎)) ⇒ ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | infxpen 9902 | Every infinite ordinal is equinumerous to its Cartesian square. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation 𝑅 is a well-ordering of (On × On) with the additional property that 𝑅-initial segments of (𝑥 × 𝑥) (where 𝑥 is a limit ordinal) are of cardinality at most 𝑥. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | xpomen 9903 | The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
| ⊢ (ω × ω) ≈ ω | ||
| Theorem | xpct 9904 | The cartesian product of two countable sets is countable. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω) | ||
| Theorem | infxpidm2 9905 | Every infinite well-orderable set is equinumerous to its Cartesian square. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. See also infxpidm 10450. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | infxpenc 9906* | A canonical version of infxpen 9902, by a completely different approach (although it uses infxpen 9902 via xpomen 9903). Using Cantor's normal form, we can show that 𝐴 ↑o 𝐵 respects equinumerosity (oef1o 9588), so that all the steps of (ω↑𝑊) · (ω↑𝑊) ≈ ω↑(2𝑊) ≈ (ω↑2)↑𝑊 ≈ ω↑𝑊 can be verified using bijections to do the ordinal commutations. (The assumption on 𝑁 can be satisfied using cnfcom3c 9596.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ω ⊆ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ (On ∖ 1o)) & ⊢ (𝜑 → 𝐹:(ω ↑o 2o)–1-1-onto→ω) & ⊢ (𝜑 → (𝐹‘∅) = ∅) & ⊢ (𝜑 → 𝑁:𝐴–1-1-onto→(ω ↑o 𝑊)) & ⊢ 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊)))) & ⊢ 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ◡((ω ↑o 2o) CNF 𝑊)) & ⊢ 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦 ∘ ◡(𝑌 ∘ ◡𝑋)))) & ⊢ 𝑋 = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)) & ⊢ 𝑌 = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) & ⊢ 𝐽 = (((ω CNF (2o ·o 𝑊)) ∘ 𝐿) ∘ ◡(ω CNF (𝑊 ·o 2o))) & ⊢ 𝑍 = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦)) & ⊢ 𝑇 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ 〈(𝑁‘𝑥), (𝑁‘𝑦)〉) & ⊢ 𝐺 = (◡𝑁 ∘ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇)) ⇒ ⊢ (𝜑 → 𝐺:(𝐴 × 𝐴)–1-1-onto→𝐴) | ||
| Theorem | infxpenc2lem1 9907* | Lemma for infxpenc2 9910. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) & ⊢ 𝑊 = (◡(𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛‘𝑏)) ⇒ ⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑊))) | ||
| Theorem | infxpenc2lem2 9908* | Lemma for infxpenc2 9910. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) & ⊢ 𝑊 = (◡(𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛‘𝑏)) & ⊢ (𝜑 → 𝐹:(ω ↑o 2o)–1-1-onto→ω) & ⊢ (𝜑 → (𝐹‘∅) = ∅) & ⊢ 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊)))) & ⊢ 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ◡((ω ↑o 2o) CNF 𝑊)) & ⊢ 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦 ∘ ◡(𝑌 ∘ ◡𝑋)))) & ⊢ 𝑋 = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)) & ⊢ 𝑌 = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) & ⊢ 𝐽 = (((ω CNF (2o ·o 𝑊)) ∘ 𝐿) ∘ ◡(ω CNF (𝑊 ·o 2o))) & ⊢ 𝑍 = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦)) & ⊢ 𝑇 = (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ 〈((𝑛‘𝑏)‘𝑥), ((𝑛‘𝑏)‘𝑦)〉) & ⊢ 𝐺 = (◡(𝑛‘𝑏) ∘ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇)) ⇒ ⊢ (𝜑 → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → (𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) | ||
| Theorem | infxpenc2lem3 9909* | Lemma for infxpenc2 9910. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) & ⊢ 𝑊 = (◡(𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛‘𝑏)) & ⊢ (𝜑 → 𝐹:(ω ↑o 2o)–1-1-onto→ω) & ⊢ (𝜑 → (𝐹‘∅) = ∅) ⇒ ⊢ (𝜑 → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → (𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) | ||
| Theorem | infxpenc2 9910* | Existence form of infxpenc 9906. A "uniform" or "canonical" version of infxpen 9902, asserting the existence of a single function 𝑔 that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ (𝐴 ∈ On → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → (𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) | ||
| Theorem | iunmapdisj 9911* | The union ∪ 𝑛 ∈ 𝐶(𝐴 ↑m 𝑛) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015.) (Revised by NM, 16-Jun-2017.) |
| ⊢ ∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑m 𝑛) | ||
| Theorem | fseqenlem1 9912* | Lemma for fseqen 9915. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴) & ⊢ 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛)))), {〈∅, 𝐵〉}) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ ω) → (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴) | ||
| Theorem | fseqenlem2 9913* | Lemma for fseqen 9915. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴) & ⊢ 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛)))), {〈∅, 𝐵〉}) & ⊢ 𝐾 = (𝑦 ∈ ∪ 𝑘 ∈ ω (𝐴 ↑m 𝑘) ↦ 〈dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)〉) ⇒ ⊢ (𝜑 → 𝐾:∪ 𝑘 ∈ ω (𝐴 ↑m 𝑘)–1-1→(ω × 𝐴)) | ||
| Theorem | fseqdom 9914* | One half of fseqen 9915. (Contributed by Mario Carneiro, 18-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (ω × 𝐴) ≼ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) | ||
| Theorem | fseqen 9915* | A set that is equinumerous to its Cartesian product is equinumerous to the set of finite sequences on it. (This can be proven more easily using some choice but this proof avoids it.) (Contributed by Mario Carneiro, 18-Nov-2014.) |
| ⊢ (((𝐴 × 𝐴) ≈ 𝐴 ∧ 𝐴 ≠ ∅) → ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ≈ (ω × 𝐴)) | ||
| Theorem | infpwfidom 9916 | The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin)) | ||
| Theorem | dfac8alem 9917* | Lemma for dfac8a 9918. If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐺 = (𝑓 ∈ V ↦ (𝑔‘(𝐴 ∖ ran 𝑓))) ⇒ ⊢ (𝐴 ∈ 𝐶 → (∃𝑔∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) | ||
| Theorem | dfac8a 9918* | Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.) |
| ⊢ (𝐴 ∈ 𝐵 → (∃ℎ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (ℎ‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) | ||
| Theorem | dfac8b 9919* | The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴) | ||
| Theorem | dfac8clem 9920* | Lemma for dfac8c 9921. (Contributed by Mario Carneiro, 10-Jan-2013.) |
| ⊢ 𝐹 = (𝑠 ∈ (𝐴 ∖ {∅}) ↦ (℩𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ¬ 𝑏𝑟𝑎)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑓∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | ||
| Theorem | dfac8c 9921* | If the union of a set is well-orderable, then the set has a choice function. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| ⊢ (𝐴 ∈ 𝐵 → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑓∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | ||
| Theorem | ac10ct 9922* | A proof of the well-ordering theorem weth 10383, an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| ⊢ (∃𝑦 ∈ On 𝐴 ≼ 𝑦 → ∃𝑥 𝑥 We 𝐴) | ||
| Theorem | ween 9923* | A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) | ||
| Theorem | ac5num 9924* | A version of ac5b 10366 with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ ((∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
| Theorem | ondomen 9925 | If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) | ||
| Theorem | numdom 9926 | A set dominated by a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) | ||
| Theorem | ssnum 9927 | A subset of a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ dom card) | ||
| Theorem | onssnum 9928 | All subsets of the ordinals are numerable. (Contributed by Mario Carneiro, 12-Feb-2013.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ∈ dom card) | ||
| Theorem | indcardi 9929* | Indirect strong induction on the cardinality of a finite or numerable set. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ dom card) & ⊢ ((𝜑 ∧ 𝑅 ≼ 𝑇 ∧ ∀𝑦(𝑆 ≺ 𝑅 → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | acnrcl 9930 | Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) | ||
| Theorem | acneq 9931 | Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) | ||
| Theorem | isacn 9932* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) | ||
| Theorem | acni 9933* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥)) | ||
| Theorem | acni2 9934* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅)) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵)) | ||
| Theorem | acni3 9935* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | acnlem 9936* | Construct a mapping satisfying the consequent of isacn 9932. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑓‘𝑥)) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) | ||
| Theorem | numacn 9937 | A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ dom card → 𝑋 ∈ AC 𝐴)) | ||
| Theorem | finacn 9938 | Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) | ||
| Theorem | acndom 9939 | A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ≼ 𝐵 → (𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴)) | ||
| Theorem | acnnum 9940 | A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) | ||
| Theorem | acnen 9941 | The class of choice sets of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → AC 𝐴 = AC 𝐵) | ||
| Theorem | acndom2 9942 | A set smaller than one with choice sequences of length 𝐴 also has choice sequences of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ≼ 𝑌 → (𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴)) | ||
| Theorem | acnen2 9943 | The class of sets with choice sequences of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 ↔ 𝑌 ∈ AC 𝐴)) | ||
| Theorem | fodomacn 9944 | A version of fodom 10411 that doesn't require the Axiom of Choice ax-ac 10347. If 𝐴 has choice sequences of length 𝐵, then any surjection from 𝐴 to 𝐵 can be inverted to an injection the other way. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ∈ AC 𝐵 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | ||
| Theorem | fodomnum 9945 | A version of fodom 10411 that doesn't require the Axiom of Choice ax-ac 10347. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | ||
| Theorem | fonum 9946 | A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ dom card) | ||
| Theorem | numwdom 9947 | A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼* 𝐴) → 𝐵 ∈ dom card) | ||
| Theorem | fodomfi2 9948 | Onto functions define dominance when a finite number of choices need to be made. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | ||
| Theorem | wdomfil 9949 | Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌)) | ||
| Theorem | infpwfien 9950 | Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴) | ||
| Theorem | inffien 9951 | The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴) | ||
| Theorem | wdomnumr 9952 | Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ 𝐴 ≼ 𝐵)) | ||
| Theorem | alephfnon 9953 | The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ ℵ Fn On | ||
| Theorem | aleph0 9954 | The first infinite cardinal number, discovered by Georg Cantor in 1873, has the same size as the set of natural numbers ω (and under our particular definition is also equal to it). In the literature, the argument of the aleph function is often written as a subscript, and the first aleph is written ℵ0. Exercise 3 of [TakeutiZaring] p. 91. Also Definition 12(i) of [Suppes] p. 228. From Moshé Machover, Set Theory, Logic, and Their Limitations, p. 95: "Aleph ... the first letter in the Hebrew alphabet ... is also the first letter of the Hebrew word ... (einsoph, meaning infinity), which is a cabbalistic appellation of the deity. The notation is due to Cantor, who was deeply interested in mysticism." (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ (ℵ‘∅) = ω | ||
| Theorem | alephlim 9955* | Value of the aleph function at a limit ordinal. Definition 12(iii) of [Suppes] p. 91. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (ℵ‘𝐴) = ∪ 𝑥 ∈ 𝐴 (ℵ‘𝑥)) | ||
| Theorem | alephsuc 9956 | Value of the aleph function at a successor ordinal. Definition 12(ii) of [Suppes] p. 91. Here we express the successor aleph in terms of the Hartogs function df-har 9443, which gives the smallest ordinal that strictly dominates its argument (or the supremum of all ordinals that are dominated by the argument). (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) | ||
| Theorem | alephon 9957 | An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ (ℵ‘𝐴) ∈ On | ||
| Theorem | alephcard 9958 | Every aleph is a cardinal number. Theorem 65 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴) | ||
| Theorem | alephnbtwn 9959 | No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of [Suppes] p. 229. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵 ∧ 𝐵 ∈ (ℵ‘suc 𝐴))) | ||
| Theorem | alephnbtwn2 9960 | No set has equinumerosity between an aleph and its successor aleph. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ¬ ((ℵ‘𝐴) ≺ 𝐵 ∧ 𝐵 ≺ (ℵ‘suc 𝐴)) | ||
| Theorem | alephordilem1 9961 | Lemma for alephordi 9962. (Contributed by NM, 23-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) | ||
| Theorem | alephordi 9962 | Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | ||
| Theorem | alephord 9963 | Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | ||
| Theorem | alephord2 9964 | Ordering property of the aleph function. Theorem 8A(a) of [Enderton] p. 213 and its converse. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))) | ||
| Theorem | alephord2i 9965 | Ordering property of the aleph function. Theorem 66 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) |
| ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) | ||
| Theorem | alephord3 9966 | Ordering property of the aleph function. (Contributed by NM, 11-Nov-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ⊆ (ℵ‘𝐵))) | ||
| Theorem | alephsucdom 9967 | A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) | ||
| Theorem | alephsuc2 9968* | An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 9430 function by transfinite recursion, starting from ω. Using this theorem we could define the aleph function with {𝑧 ∈ On ∣ 𝑧 ≼ 𝑥} in place of ∩ {𝑧 ∈ On ∣ 𝑥 ≺ 𝑧} in df-aleph 9830. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) | ||
| Theorem | alephdom 9969 | Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) | ||
| Theorem | alephgeom 9970 | Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | ||
| Theorem | alephislim 9971 | Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ On ↔ Lim (ℵ‘𝐴)) | ||
| Theorem | aleph11 9972 | The aleph function is one-to-one. (Contributed by NM, 3-Aug-2004.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) = (ℵ‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | alephf1 9973 | The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 9991. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ℵ:On–1-1→On | ||
| Theorem | alephsdom 9974 | If an ordinal is smaller than an initial ordinal, it is strictly dominated by it. (Contributed by Jeff Hankins, 24-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵))) | ||
| Theorem | alephdom2 9975 | A dominated initial ordinal is included. (Contributed by Jeff Hankins, 24-Oct-2009.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ 𝐵)) | ||
| Theorem | alephle 9976 | The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 9997, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.) |
| ⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) | ||
| Theorem | cardaleph 9977* | Given any transfinite cardinal number 𝐴, there is exactly one aleph that is equal to it. Here we compute that aleph explicitly. (Contributed by NM, 9-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) | ||
| Theorem | cardalephex 9978* | Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.) |
| ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) | ||
| Theorem | infenaleph 9979* | An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) | ||
| Theorem | isinfcard 9980 | Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003.) |
| ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) | ||
| Theorem | iscard3 9981 | Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.) |
| ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ (ω ∪ ran ℵ)) | ||
| Theorem | cardnum 9982 | Two ways to express the class of all cardinal numbers, which consists of the finite ordinals in ω plus the transfinite alephs. (Contributed by NM, 10-Sep-2004.) |
| ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} = (ω ∪ ran ℵ) | ||
| Theorem | alephinit 9983* | An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ ∀𝑥 ∈ On (𝐴 ≼ 𝑥 → 𝐴 ⊆ 𝑥))) | ||
| Theorem | carduniima 9984 | The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) | ||
| Theorem | cardinfima 9985* | If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
| ⊢ (𝐴 ∈ 𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ ran ℵ)) | ||
| Theorem | alephiso 9986 | Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.) |
| ⊢ ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) | ||
| Theorem | alephprc 9987 | The class of all transfinite cardinal numbers (the range of the aleph function) is a proper class. Proposition 10.26 of [TakeutiZaring] p. 90. (Contributed by NM, 11-Nov-2003.) |
| ⊢ ¬ ran ℵ ∈ V | ||
| Theorem | alephsson 9988 | The class of transfinite cardinals (the range of the aleph function) is a subclass of the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.) |
| ⊢ ran ℵ ⊆ On | ||
| Theorem | unialeph 9989 | The union of the class of transfinite cardinals (the range of the aleph function) is the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.) |
| ⊢ ∪ ran ℵ = On | ||
| Theorem | alephsmo 9990 | The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
| ⊢ Smo ℵ | ||
| Theorem | alephf1ALT 9991 | Alternate proof of alephf1 9973. (Contributed by Mario Carneiro, 15-Mar-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℵ:On–1-1→On | ||
| Theorem | alephfplem1 9992 | Lemma for alephfp 9996. (Contributed by NM, 6-Nov-2004.) |
| ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝐻‘∅) ∈ ran ℵ | ||
| Theorem | alephfplem2 9993* | Lemma for alephfp 9996. (Contributed by NM, 6-Nov-2004.) |
| ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻‘𝑤))) | ||
| Theorem | alephfplem3 9994* | Lemma for alephfp 9996. (Contributed by NM, 6-Nov-2004.) |
| ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) | ||
| Theorem | alephfplem4 9995 | Lemma for alephfp 9996. (Contributed by NM, 5-Nov-2004.) |
| ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ | ||
| Theorem | alephfp 9996 | The aleph function has a fixed point. Similar to Proposition 11.18 of [TakeutiZaring] p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 9997 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004.) (Proof shortened by Mario Carneiro, 15-May-2015.) |
| ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (ℵ‘∪ (𝐻 “ ω)) = ∪ (𝐻 “ ω) | ||
| Theorem | alephfp2 9997 | The aleph function has at least one fixed point. Proposition 11.18 of [TakeutiZaring] p. 104. See alephfp 9996 for an actual example of a fixed point. Compare the inequality alephle 9976 that holds in general. Note that if 𝑥 is a fixed point, then ℵ‘ℵ‘ℵ‘... ℵ‘𝑥 = 𝑥. (Contributed by NM, 6-Nov-2004.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 | ||
| Theorem | alephval3 9998* | An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in [Enderton] p. 212 and definition of aleph in [BellMachover] p. 490 . (Contributed by NM, 16-Nov-2003.) |
| ⊢ (𝐴 ∈ On → (ℵ‘𝐴) = ∩ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 = (ℵ‘𝑦))}) | ||
| Theorem | alephsucpw2 9999 | The power set of an aleph is not strictly dominated by the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10564 or gchaleph2 10560.) The transposed form alephsucpw 10458 cannot be proven without the AC, and is in fact equivalent to it. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) | ||
| Theorem | mappwen 10000 | Power rule for cardinal arithmetic. Theorem 11.21 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵)) → (𝐴 ↑m 𝐵) ≈ 𝒫 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |