HomeHome Metamath Proof Explorer
Theorem List (p. 100 of 465)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29274)
  Hilbert Space Explorer  Hilbert Space Explorer
(29275-30797)
  Users' Mathboxes  Users' Mathboxes
(30798-46480)
 

Theorem List for Metamath Proof Explorer - 9901-10000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdfac12r 9901 The axiom of choice holds iff every ordinal has a well-orderable powerset. This version of dfac12 9904 does not assume the Axiom of Regularity. (Contributed by Mario Carneiro, 29-May-2015.)
(∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)
 
Theoremdfac12k 9902* Equivalence of dfac12 9904 and dfac12a 9903, without using Regularity. (Contributed by Mario Carneiro, 21-May-2015.)
(∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card)
 
Theoremdfac12a 9903 The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015.)
(CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)
 
Theoremdfac12 9904 The axiom of choice holds iff every aleph has a well-orderable powerset. (Contributed by Mario Carneiro, 21-May-2015.)
(CHOICE ↔ ∀𝑥 ∈ On 𝒫 (ℵ‘𝑥) ∈ dom card)
 
Theoremkmlem1 9905* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, 1 => 2. (Contributed by NM, 5-Apr-2004.)
(∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 𝜑) → ∃𝑦𝑧𝑥 𝜓) → ∀𝑥(∀𝑧𝑥𝑤𝑥 𝜑 → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → 𝜓)))
 
Theoremkmlem2 9906* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
(∃𝑦𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
 
Theoremkmlem3 9907* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. The right-hand side is part of the hypothesis of 4. (Contributed by NM, 25-Mar-2004.)
((𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ ↔ ∃𝑣𝑧𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)))
 
Theoremkmlem4 9908* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.)
((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅)
 
Theoremkmlem5 9909* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ (𝑤 (𝑥 ∖ {𝑤}))) = ∅)
 
Theoremkmlem6 9910* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004.)
((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝜑𝐴 = ∅)) → ∀𝑧𝑥𝑣𝑧𝑤𝑥 (𝜑 → ¬ 𝑣𝐴))
 
Theoremkmlem7 9911* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004.)
((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)))
 
Theoremkmlem8 9912* Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 4-Apr-2004.)
((¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))) ↔ (∃𝑧𝑢𝑤𝑧 𝜓 ∨ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
 
Theoremkmlem9 9913* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}       𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)
 
Theoremkmlem10 9914* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}       (∀(∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 𝜑) → ∃𝑦𝑧𝐴 𝜑)
 
Theoremkmlem11 9915* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.)
𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}       (𝑧𝑥 → (𝑧 𝐴) = (𝑧 (𝑥 ∖ {𝑧})))
 
Theoremkmlem12 9916* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 27-Mar-2004.)
𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}       (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ → (∀𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 𝐴)))))
 
Theoremkmlem13 9917* Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 5-Apr-2004.)
𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}       (∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥(¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
 
Theoremkmlem14 9918* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004.)
(𝜑 ↔ (𝑧𝑦 → ((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣)))    &   (𝜓 ↔ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))    &   (𝜒 ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))       (∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ ∃𝑦𝑧𝑣𝑢(𝑦𝑥𝜑))
 
Theoremkmlem15 9919* Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004.)
(𝜑 ↔ (𝑧𝑦 → ((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣)))    &   (𝜓 ↔ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))    &   (𝜒 ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))       ((¬ 𝑦𝑥𝜒) ↔ ∀𝑧𝑣𝑢𝑦𝑥𝜓))
 
Theoremkmlem16 9920* Lemma for 5-quantifier AC of Kurt Maes, Th. 4 5 <=> 4. (Contributed by NM, 4-Apr-2004.)
(𝜑 ↔ (𝑧𝑦 → ((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣)))    &   (𝜓 ↔ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))    &   (𝜒 ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))       ((∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ∨ ∃𝑦𝑦𝑥𝜒)) ↔ ∃𝑦𝑧𝑣𝑢((𝑦𝑥𝜑) ∨ (¬ 𝑦𝑥𝜓)))
 
Theoremdfackm 9921* Equivalence of the Axiom of Choice and Maes' AC ackm 10220. The proof consists of lemmas kmlem1 9905 through kmlem16 9920 and this final theorem. AC is not used for the proof. Note: bypassing the first step (i.e., replacing dfac5 9883 with biid 260) establishes the AC equivalence shown by Maes' writeup. The left-hand-side AC shown here was chosen because it is shorter to display. (Contributed by NM, 13-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.)
(CHOICE ↔ ∀𝑥𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))))
 
2.6.14  Cardinal number arithmetic

For cardinal arithmetic, we follow [Mendelson] p. 258. Rather than defining operations restricted to cardinal numbers, we use disjoint union df-dju 9658 () for cardinal addition, Cartesian product df-xp 5595 (×) for cardinal multiplication, and set exponentiation df-map 8598 (m) for cardinal exponentiation. Equinumerosity and dominance serve the roles of equality and ordering. If we wanted to, we could easily convert our theorems to actual cardinal number operations via carden 10306, carddom 10309, and cardsdom 10310. The advantage of Mendelson's approach is that we can directly use many equinumerosity theorems that we already have available.

 
Theoremundjudom 9922 Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) (Revised by Jim Kingdon, 15-Aug-2023.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴𝐵))
 
Theoremendjudisj 9923 Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007.)
((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
 
Theoremdjuen 9924 Disjoint unions of equinumerous sets are equinumerous. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
 
Theoremdjuenun 9925 Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
 
Theoremdju1en 9926 Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴)
 
Theoremdju1dif 9927 Adding and subtracting one gives back the original cardinality. Similar to pncan 11225 for cardinalities. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by Jim Kingdon, 20-Aug-2023.)
((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ 𝐴)
 
Theoremdju1p1e2 9928 1+1=2 for cardinal number addition, derived from pm54.43 9758 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 9652), but after applying definitions, our theorem is equivalent. Because we use a disjoint union for cardinal addition (as explained in the comment at the top of this section), we use instead of =. See dju1p1e2ALT 9929 for a shorter proof that doesn't use pm54.43 9758. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.)
(1o ⊔ 1o) ≈ 2o
 
Theoremdju1p1e2ALT 9929 Alternate proof of dju1p1e2 9928. (Contributed by Mario Carneiro, 29-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(1o ⊔ 1o) ≈ 2o
 
Theoremdju0en 9930 Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(𝐴𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴)
 
Theoremxp2dju 9931 Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(2o × 𝐴) = (𝐴𝐴)
 
Theoremdjucomen 9932 Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
 
Theoremdjuassen 9933 Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵𝐶)))
 
Theoremxpdjuen 9934 Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)))
 
Theoremmapdjuen 9935 Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of [Enderton] p. 142. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
 
Theorempwdjuen 9936 Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.)
((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))
 
Theoremdjudom1 9937 Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.)
((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))
 
Theoremdjudom2 9938 Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝐵𝐶𝑉) → (𝐶𝐴) ≼ (𝐶𝐵))
 
Theoremdjudoml 9939 A set is dominated by its disjoint union with another. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))
 
Theoremdjuxpdom 9940 Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.)
((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
 
Theoremdjufi 9941 The disjoint union of two finite sets is finite. (Contributed by NM, 22-Oct-2004.)
((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
 
Theoremcdainflem 9942 Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013.)
((𝐴𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))
 
Theoremdjuinf 9943 A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(ω ≼ 𝐴 ↔ ω ≼ (𝐴𝐴))
 
Theoreminfdju1 9944 An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.)
(ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
 
Theorempwdju1 9945 The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.)
(𝐴𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
 
Theorempwdjuidm 9946 If the natural numbers inject into 𝐴, then 𝒫 𝐴 is idempotent under cardinal sum. (Contributed by Mario Carneiro, 15-May-2015.)
(ω ≼ 𝐴 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
 
Theoremdjulepw 9947 If 𝐴 is idempotent under cardinal sum and 𝐵 is dominated by the power set of 𝐴, then so is the cardinal sum of 𝐴 and 𝐵. (Contributed by Mario Carneiro, 15-May-2015.)
(((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
 
Theoremonadju 9948 The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Jim Kingdon, 7-Sep-2023.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ≈ (𝐴𝐵))
 
Theoremcardadju 9949 The cardinal sum is equinumerous to an ordinal sum of the cardinals. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
 
Theoremdjunum 9950 The disjoint union of two numerable sets is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
 
Theoremunnum 9951 The union of two numerable sets is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
 
Theoremnnadju 9952 The cardinal and ordinal sums of finite ordinals are equal. For a shorter proof using ax-rep 5214, see nnadjuALT 9953. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 6-Feb-2013.) Avoid ax-rep 5214. (Revised by BTernaryTau, 2-Jul-2024.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))
 
TheoremnnadjuALT 9953 Shorter proof of nnadju 9952 using ax-rep 5214. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 6-Feb-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))
 
Theoremficardadju 9954 The disjoint union of finite sets is equinumerous to the ordinal sum of the cardinalities of those sets. (Contributed by BTernaryTau, 3-Jul-2024.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
 
Theoremficardun 9955 The cardinality of the union of disjoint, finite sets is the ordinal sum of their cardinalities. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) Avoid ax-rep 5214. (Revised by BTernaryTau, 3-Jul-2024.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +o (card‘𝐵)))
 
TheoremficardunOLD 9956 Obsolete version of ficardun 9955 as of 3-Jul-2024. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +o (card‘𝐵)))
 
Theoremficardun2 9957 The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013.) Avoid ax-rep 5214. (Revised by BTernaryTau, 3-Jul-2024.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵)))
 
Theoremficardun2OLD 9958 Obsolete version of ficardun2 9957 as of 3-Jul-2024. (Contributed by Mario Carneiro, 5-Feb-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵)))
 
Theorempwsdompw 9959* Lemma for domtriom 10198. This is the equinumerosity version of the algebraic identity Σ𝑘𝑛(2↑𝑘) = (2↑𝑛) − 1. (Contributed by Mario Carneiro, 7-Feb-2013.)
((𝑛 ∈ ω ∧ ∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘) → 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛))
 
Theoremunctb 9960 The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)
 
Theoreminfdjuabs 9961 Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
 
Theoreminfunabs 9962 An infinite set is equinumerous to its union with a smaller one. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
 
Theoreminfdju 9963 The sum of two cardinal numbers is their maximum, if one of them is infinite. Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≈ (𝐴𝐵))
 
Theoreminfdif 9964 The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in [Enderton] p. 164. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
 
Theoreminfdif2 9965 Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))
 
Theoreminfxpdom 9966 Dominance law for multiplication with an infinite cardinal. (Contributed by NM, 26-Mar-2006.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 × 𝐵) ≼ 𝐴)
 
Theoreminfxpabs 9967 Absorption law for multiplication with an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ 𝐴)
 
Theoreminfunsdom1 9968 The union of two sets that are strictly dominated by the infinite set 𝑋 is also dominated by 𝑋. This version of infunsdom 9969 assumes additionally that 𝐴 is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Mario Carneiro, 3-May-2015.)
(((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
 
Theoreminfunsdom 9969 The union of two sets that are strictly dominated by the infinite set 𝑋 is also strictly dominated by 𝑋. (Contributed by Mario Carneiro, 3-May-2015.)
(((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
 
Theoreminfxp 9970 Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
 
Theorempwdjudom 9971 A property of dominance over a powerset, and a main lemma for gchac 10436. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
(𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)
 
Theoreminfpss 9972* Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 10068. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
(ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
 
Theoreminfmap2 9973* An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. Although this version of infmap 10331 avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
 
2.6.15  The Ackermann bijection
 
Theoremackbij2lem1 9974 Lemma for ackbij2 9998. (Contributed by Stefan O'Rear, 18-Nov-2014.)
(𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin))
 
Theoremackbij1lem1 9975 Lemma for ackbij2 9998. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐴𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵𝐴))
 
Theoremackbij1lem2 9976 Lemma for ackbij2 9998. (Contributed by Stefan O'Rear, 18-Nov-2014.)
(𝐴𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵𝐴)))
 
Theoremackbij1lem3 9977 Lemma for ackbij2 9998. (Contributed by Stefan O'Rear, 18-Nov-2014.)
(𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin))
 
Theoremackbij1lem4 9978 Lemma for ackbij2 9998. (Contributed by Stefan O'Rear, 19-Nov-2014.)
(𝐴 ∈ ω → {𝐴} ∈ (𝒫 ω ∩ Fin))
 
Theoremackbij1lem5 9979 Lemma for ackbij2 9998. (Contributed by Stefan O'Rear, 19-Nov-2014.) (Proof shortened by AV, 18-Jul-2022.)
(𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
 
Theoremackbij1lem6 9980 Lemma for ackbij2 9998. (Contributed by Stefan O'Rear, 18-Nov-2014.)
((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))
 
Theoremackbij1lem7 9981* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 21-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐴) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
 
Theoremackbij1lem8 9982* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 19-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
 
Theoremackbij1lem9 9983* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 19-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐹‘(𝐴𝐵)) = ((𝐹𝐴) +o (𝐹𝐵)))
 
Theoremackbij1lem10 9984* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       𝐹:(𝒫 ω ∩ Fin)⟶ω
 
Theoremackbij1lem11 9985* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin))
 
Theoremackbij1lem12 9986* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
 
Theoremackbij1lem13 9987* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       (𝐹‘∅) = ∅
 
Theoremackbij1lem14 9988* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹𝐴))
 
Theoremackbij1lem15 9989* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐)))
 
Theoremackbij1lem16 9990* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
 
Theoremackbij1lem17 9991* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       𝐹:(𝒫 ω ∩ Fin)–1-1→ω
 
Theoremackbij1lem18 9992* Lemma for ackbij1 9993. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       (𝐴 ∈ (𝒫 ω ∩ Fin) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝐴))
 
Theoremackbij1 9993* The Ackermann bijection, part 1: each natural number can be uniquely coded in binary as a finite set of natural numbers and conversely. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       𝐹:(𝒫 ω ∩ Fin)–1-1-onto→ω
 
Theoremackbij1b 9994* The Ackermann bijection, part 1b: the bijection from ackbij1 9993 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))       (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))
 
Theoremackbij2lem2 9995* Lemma for ackbij2 9998. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))    &   𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))       (𝐴 ∈ ω → (rec(𝐺, ∅)‘𝐴):(𝑅1𝐴)–1-1-onto→(card‘(𝑅1𝐴)))
 
Theoremackbij2lem3 9996* Lemma for ackbij2 9998. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))    &   𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))       (𝐴 ∈ ω → (rec(𝐺, ∅)‘𝐴) ⊆ (rec(𝐺, ∅)‘suc 𝐴))
 
Theoremackbij2lem4 9997* Lemma for ackbij2 9998. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))    &   𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))       (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴))
 
Theoremackbij2 9998* The Ackermann bijection, part 2: hereditarily finite sets can be represented by recursive binary notation. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))    &   𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))    &   𝐻 = (rec(𝐺, ∅) “ ω)       𝐻: (𝑅1 “ ω)–1-1-onto→ω
 
Theoremr1om 9999 The set of hereditarily finite sets is countable. See ackbij2 9998 for an explicit bijection that works without Infinity. See also r1omALT 10531. (Contributed by Stefan O'Rear, 18-Nov-2014.)
(𝑅1‘ω) ≈ ω
 
Theoremfictb 10000 A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009.) (Proof shortened by Mario Carneiro, 17-May-2015.)
(𝐴𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46480
  Copyright terms: Public domain < Previous  Next >