MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfnon Structured version   Visualization version   GIF version

Theorem alephfnon 10060
Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
alephfnon ℵ Fn On

Proof of Theorem alephfnon
StepHypRef Expression
1 rdgfnon 8418 . 2 rec(har, ω) Fn On
2 df-aleph 9935 . . 3 ℵ = rec(har, ω)
32fneq1i 6647 . 2 (ℵ Fn On ↔ rec(har, ω) Fn On)
41, 3mpbir 230 1 ℵ Fn On
Colors of variables: wff setvar class
Syntax hints:  Oncon0 6365   Fn wfn 6539  ωcom 7855  reccrdg 8409  harchar 9551  cale 9931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-aleph 9935
This theorem is referenced by:  alephon  10064  alephcard  10065  alephnbtwn  10066  alephgeom  10077  alephf1  10080  infenaleph  10086  isinfcard  10087  alephiso  10093  alephsmo  10097  alephf1ALT  10098  alephfplem1  10099  alephfplem3  10101  alephsing  10271  alephadd  10572  alephreg  10577  pwcfsdom  10578  cfpwsdom  10579  gch2  10670  gch3  10671
  Copyright terms: Public domain W3C validator