| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephfnon | Structured version Visualization version GIF version | ||
| Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| alephfnon | ⊢ ℵ Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfnon 8343 | . 2 ⊢ rec(har, ω) Fn On | |
| 2 | df-aleph 9839 | . . 3 ⊢ ℵ = rec(har, ω) | |
| 3 | 2 | fneq1i 6584 | . 2 ⊢ (ℵ Fn On ↔ rec(har, ω) Fn On) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ℵ Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: Oncon0 6312 Fn wfn 6482 ωcom 7802 reccrdg 8334 harchar 9448 ℵcale 9835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-aleph 9839 |
| This theorem is referenced by: alephon 9966 alephcard 9967 alephnbtwn 9968 alephgeom 9979 alephf1 9982 infenaleph 9988 isinfcard 9989 alephiso 9995 alephsmo 9999 alephf1ALT 10000 alephfplem1 10001 alephfplem3 10003 alephsing 10173 alephadd 10474 alephreg 10479 pwcfsdom 10480 cfpwsdom 10481 gch2 10572 gch3 10573 |
| Copyright terms: Public domain | W3C validator |