Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephfnon | Structured version Visualization version GIF version |
Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
alephfnon | ⊢ ℵ Fn On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfnon 8249 | . 2 ⊢ rec(har, ω) Fn On | |
2 | df-aleph 9698 | . . 3 ⊢ ℵ = rec(har, ω) | |
3 | 2 | fneq1i 6530 | . 2 ⊢ (ℵ Fn On ↔ rec(har, ω) Fn On) |
4 | 1, 3 | mpbir 230 | 1 ⊢ ℵ Fn On |
Colors of variables: wff setvar class |
Syntax hints: Oncon0 6266 Fn wfn 6428 ωcom 7712 reccrdg 8240 harchar 9315 ℵcale 9694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-aleph 9698 |
This theorem is referenced by: alephon 9825 alephcard 9826 alephnbtwn 9827 alephgeom 9838 alephf1 9841 infenaleph 9847 isinfcard 9848 alephiso 9854 alephsmo 9858 alephf1ALT 9859 alephfplem1 9860 alephfplem3 9862 alephsing 10032 alephadd 10333 alephreg 10338 pwcfsdom 10339 cfpwsdom 10340 gch2 10431 gch3 10432 |
Copyright terms: Public domain | W3C validator |