| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephfnon | Structured version Visualization version GIF version | ||
| Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| alephfnon | ⊢ ℵ Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfnon 8388 | . 2 ⊢ rec(har, ω) Fn On | |
| 2 | df-aleph 9899 | . . 3 ⊢ ℵ = rec(har, ω) | |
| 3 | 2 | fneq1i 6617 | . 2 ⊢ (ℵ Fn On ↔ rec(har, ω) Fn On) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ℵ Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: Oncon0 6334 Fn wfn 6508 ωcom 7844 reccrdg 8379 harchar 9515 ℵcale 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-aleph 9899 |
| This theorem is referenced by: alephon 10028 alephcard 10029 alephnbtwn 10030 alephgeom 10041 alephf1 10044 infenaleph 10050 isinfcard 10051 alephiso 10057 alephsmo 10061 alephf1ALT 10062 alephfplem1 10063 alephfplem3 10065 alephsing 10235 alephadd 10536 alephreg 10541 pwcfsdom 10542 cfpwsdom 10543 gch2 10634 gch3 10635 |
| Copyright terms: Public domain | W3C validator |