![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephfnon | Structured version Visualization version GIF version |
Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
alephfnon | ⊢ ℵ Fn On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfnon 8457 | . 2 ⊢ rec(har, ω) Fn On | |
2 | df-aleph 9978 | . . 3 ⊢ ℵ = rec(har, ω) | |
3 | 2 | fneq1i 6666 | . 2 ⊢ (ℵ Fn On ↔ rec(har, ω) Fn On) |
4 | 1, 3 | mpbir 231 | 1 ⊢ ℵ Fn On |
Colors of variables: wff setvar class |
Syntax hints: Oncon0 6386 Fn wfn 6558 ωcom 7887 reccrdg 8448 harchar 9594 ℵcale 9974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-aleph 9978 |
This theorem is referenced by: alephon 10107 alephcard 10108 alephnbtwn 10109 alephgeom 10120 alephf1 10123 infenaleph 10129 isinfcard 10130 alephiso 10136 alephsmo 10140 alephf1ALT 10141 alephfplem1 10142 alephfplem3 10144 alephsing 10314 alephadd 10615 alephreg 10620 pwcfsdom 10621 cfpwsdom 10622 gch2 10713 gch3 10714 |
Copyright terms: Public domain | W3C validator |