MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfnon Structured version   Visualization version   GIF version

Theorem alephfnon 9978
Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
alephfnon ℵ Fn On

Proof of Theorem alephfnon
StepHypRef Expression
1 rdgfnon 8347 . 2 rec(har, ω) Fn On
2 df-aleph 9855 . . 3 ℵ = rec(har, ω)
32fneq1i 6583 . 2 (ℵ Fn On ↔ rec(har, ω) Fn On)
41, 3mpbir 231 1 ℵ Fn On
Colors of variables: wff setvar class
Syntax hints:  Oncon0 6311   Fn wfn 6481  ωcom 7806  reccrdg 8338  harchar 9467  cale 9851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-aleph 9855
This theorem is referenced by:  alephon  9982  alephcard  9983  alephnbtwn  9984  alephgeom  9995  alephf1  9998  infenaleph  10004  isinfcard  10005  alephiso  10011  alephsmo  10015  alephf1ALT  10016  alephfplem1  10017  alephfplem3  10019  alephsing  10189  alephadd  10490  alephreg  10495  pwcfsdom  10496  cfpwsdom  10497  gch2  10588  gch3  10589
  Copyright terms: Public domain W3C validator