| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephfnon | Structured version Visualization version GIF version | ||
| Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| alephfnon | ⊢ ℵ Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfnon 8332 | . 2 ⊢ rec(har, ω) Fn On | |
| 2 | df-aleph 9825 | . . 3 ⊢ ℵ = rec(har, ω) | |
| 3 | 2 | fneq1i 6574 | . 2 ⊢ (ℵ Fn On ↔ rec(har, ω) Fn On) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ℵ Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: Oncon0 6302 Fn wfn 6472 ωcom 7791 reccrdg 8323 harchar 9437 ℵcale 9821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-aleph 9825 |
| This theorem is referenced by: alephon 9952 alephcard 9953 alephnbtwn 9954 alephgeom 9965 alephf1 9968 infenaleph 9974 isinfcard 9975 alephiso 9981 alephsmo 9985 alephf1ALT 9986 alephfplem1 9987 alephfplem3 9989 alephsing 10159 alephadd 10460 alephreg 10465 pwcfsdom 10466 cfpwsdom 10467 gch2 10558 gch3 10559 |
| Copyright terms: Public domain | W3C validator |