![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephfnon | Structured version Visualization version GIF version |
Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
alephfnon | ⊢ ℵ Fn On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfnon 8418 | . 2 ⊢ rec(har, ω) Fn On | |
2 | df-aleph 9935 | . . 3 ⊢ ℵ = rec(har, ω) | |
3 | 2 | fneq1i 6647 | . 2 ⊢ (ℵ Fn On ↔ rec(har, ω) Fn On) |
4 | 1, 3 | mpbir 230 | 1 ⊢ ℵ Fn On |
Colors of variables: wff setvar class |
Syntax hints: Oncon0 6365 Fn wfn 6539 ωcom 7855 reccrdg 8409 harchar 9551 ℵcale 9931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-aleph 9935 |
This theorem is referenced by: alephon 10064 alephcard 10065 alephnbtwn 10066 alephgeom 10077 alephf1 10080 infenaleph 10086 isinfcard 10087 alephiso 10093 alephsmo 10097 alephf1ALT 10098 alephfplem1 10099 alephfplem3 10101 alephsing 10271 alephadd 10572 alephreg 10577 pwcfsdom 10578 cfpwsdom 10579 gch2 10670 gch3 10671 |
Copyright terms: Public domain | W3C validator |