| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephfnon | Structured version Visualization version GIF version | ||
| Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| alephfnon | ⊢ ℵ Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfnon 8347 | . 2 ⊢ rec(har, ω) Fn On | |
| 2 | df-aleph 9855 | . . 3 ⊢ ℵ = rec(har, ω) | |
| 3 | 2 | fneq1i 6583 | . 2 ⊢ (ℵ Fn On ↔ rec(har, ω) Fn On) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ ℵ Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: Oncon0 6311 Fn wfn 6481 ωcom 7806 reccrdg 8338 harchar 9467 ℵcale 9851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-aleph 9855 |
| This theorem is referenced by: alephon 9982 alephcard 9983 alephnbtwn 9984 alephgeom 9995 alephf1 9998 infenaleph 10004 isinfcard 10005 alephiso 10011 alephsmo 10015 alephf1ALT 10016 alephfplem1 10017 alephfplem3 10019 alephsing 10189 alephadd 10490 alephreg 10495 pwcfsdom 10496 cfpwsdom 10497 gch2 10588 gch3 10589 |
| Copyright terms: Public domain | W3C validator |