Detailed syntax breakdown of Definition df-cf
Step | Hyp | Ref
| Expression |
1 | | ccf 9695 |
. 2
class
cf |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | con0 6266 |
. . 3
class
On |
4 | | vy |
. . . . . . . . 9
setvar 𝑦 |
5 | 4 | cv 1538 |
. . . . . . . 8
class 𝑦 |
6 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
7 | 6 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
8 | | ccrd 9693 |
. . . . . . . . 9
class
card |
9 | 7, 8 | cfv 6433 |
. . . . . . . 8
class
(card‘𝑧) |
10 | 5, 9 | wceq 1539 |
. . . . . . 7
wff 𝑦 = (card‘𝑧) |
11 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
12 | 7, 11 | wss 3887 |
. . . . . . . 8
wff 𝑧 ⊆ 𝑥 |
13 | | vv |
. . . . . . . . . . . 12
setvar 𝑣 |
14 | 13 | cv 1538 |
. . . . . . . . . . 11
class 𝑣 |
15 | | vu |
. . . . . . . . . . . 12
setvar 𝑢 |
16 | 15 | cv 1538 |
. . . . . . . . . . 11
class 𝑢 |
17 | 14, 16 | wss 3887 |
. . . . . . . . . 10
wff 𝑣 ⊆ 𝑢 |
18 | 17, 15, 7 | wrex 3065 |
. . . . . . . . 9
wff
∃𝑢 ∈
𝑧 𝑣 ⊆ 𝑢 |
19 | 18, 13, 11 | wral 3064 |
. . . . . . . 8
wff
∀𝑣 ∈
𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 |
20 | 12, 19 | wa 396 |
. . . . . . 7
wff (𝑧 ⊆ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢) |
21 | 10, 20 | wa 396 |
. . . . . 6
wff (𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢)) |
22 | 21, 6 | wex 1782 |
. . . . 5
wff
∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢)) |
23 | 22, 4 | cab 2715 |
. . . 4
class {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢))} |
24 | 23 | cint 4879 |
. . 3
class ∩ {𝑦
∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢))} |
25 | 2, 3, 24 | cmpt 5157 |
. 2
class (𝑥 ∈ On ↦ ∩ {𝑦
∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢))}) |
26 | 1, 25 | wceq 1539 |
1
wff cf = (𝑥 ∈ On ↦ ∩ {𝑦
∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢))}) |