Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brbigcup | Structured version Visualization version GIF version |
Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
brbigcup.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brbigcup | ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relbigcup 34207 | . . 3 ⊢ Rel Bigcup | |
2 | 1 | brrelex1i 5638 | . 2 ⊢ (𝐴 Bigcup 𝐵 → 𝐴 ∈ V) |
3 | brbigcup.1 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | eleq1 2826 | . . . 4 ⊢ (∪ 𝐴 = 𝐵 → (∪ 𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
5 | 3, 4 | mpbiri 257 | . . 3 ⊢ (∪ 𝐴 = 𝐵 → ∪ 𝐴 ∈ V) |
6 | uniexb 7604 | . . 3 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
7 | 5, 6 | sylibr 233 | . 2 ⊢ (∪ 𝐴 = 𝐵 → 𝐴 ∈ V) |
8 | breq1 5076 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵 ↔ 𝐴 Bigcup 𝐵)) | |
9 | unieq 4850 | . . . 4 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
10 | 9 | eqeq1d 2740 | . . 3 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 = 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
11 | vex 3433 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | df-bigcup 34168 | . . . . 5 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
13 | brxp 5631 | . . . . . 6 ⊢ (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V)) | |
14 | 11, 3, 13 | mpbir2an 708 | . . . . 5 ⊢ 𝑥(V × V)𝐵 |
15 | epel 5493 | . . . . . . 7 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
16 | 15 | rexbii 3179 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝑥 𝑦 E 𝑧 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) |
17 | vex 3433 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
18 | 17, 11 | coep 33727 | . . . . . 6 ⊢ (𝑦( E ∘ E )𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 E 𝑧) |
19 | eluni2 4843 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) | |
20 | 16, 18, 19 | 3bitr4ri 304 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ 𝑦( E ∘ E )𝑥) |
21 | 11, 3, 12, 14, 20 | brtxpsd3 34206 | . . . 4 ⊢ (𝑥 Bigcup 𝐵 ↔ 𝐵 = ∪ 𝑥) |
22 | eqcom 2745 | . . . 4 ⊢ (𝐵 = ∪ 𝑥 ↔ ∪ 𝑥 = 𝐵) | |
23 | 21, 22 | bitri 274 | . . 3 ⊢ (𝑥 Bigcup 𝐵 ↔ ∪ 𝑥 = 𝐵) |
24 | 8, 10, 23 | vtoclbg 3504 | . 2 ⊢ (𝐴 ∈ V → (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
25 | 2, 7, 24 | pm5.21nii 380 | 1 ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3429 ∪ cuni 4839 class class class wbr 5073 E cep 5489 × cxp 5582 ∘ ccom 5588 Bigcup cbigcup 34144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-symdif 4176 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-eprel 5490 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-fo 6432 df-fv 6434 df-1st 7820 df-2nd 7821 df-txp 34164 df-bigcup 34168 |
This theorem is referenced by: dfbigcup2 34209 fvbigcup 34212 ellimits 34220 brapply 34248 dfrdg4 34261 |
Copyright terms: Public domain | W3C validator |