| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brbigcup | Structured version Visualization version GIF version | ||
| Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| brbigcup.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brbigcup | ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relbigcup 35858 | . . 3 ⊢ Rel Bigcup | |
| 2 | 1 | brrelex1i 5687 | . 2 ⊢ (𝐴 Bigcup 𝐵 → 𝐴 ∈ V) |
| 3 | brbigcup.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | eleq1 2816 | . . . 4 ⊢ (∪ 𝐴 = 𝐵 → (∪ 𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
| 5 | 3, 4 | mpbiri 258 | . . 3 ⊢ (∪ 𝐴 = 𝐵 → ∪ 𝐴 ∈ V) |
| 6 | uniexb 7720 | . . 3 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ (∪ 𝐴 = 𝐵 → 𝐴 ∈ V) |
| 8 | breq1 5105 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵 ↔ 𝐴 Bigcup 𝐵)) | |
| 9 | unieq 4878 | . . . 4 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 10 | 9 | eqeq1d 2731 | . . 3 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 = 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
| 11 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | df-bigcup 35819 | . . . . 5 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
| 13 | brxp 5680 | . . . . . 6 ⊢ (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V)) | |
| 14 | 11, 3, 13 | mpbir2an 711 | . . . . 5 ⊢ 𝑥(V × V)𝐵 |
| 15 | epel 5534 | . . . . . . 7 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
| 16 | 15 | rexbii 3076 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝑥 𝑦 E 𝑧 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) |
| 17 | vex 3448 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 18 | 17, 11 | coep 35712 | . . . . . 6 ⊢ (𝑦( E ∘ E )𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 E 𝑧) |
| 19 | eluni2 4871 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) | |
| 20 | 16, 18, 19 | 3bitr4ri 304 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ 𝑦( E ∘ E )𝑥) |
| 21 | 11, 3, 12, 14, 20 | brtxpsd3 35857 | . . . 4 ⊢ (𝑥 Bigcup 𝐵 ↔ 𝐵 = ∪ 𝑥) |
| 22 | eqcom 2736 | . . . 4 ⊢ (𝐵 = ∪ 𝑥 ↔ ∪ 𝑥 = 𝐵) | |
| 23 | 21, 22 | bitri 275 | . . 3 ⊢ (𝑥 Bigcup 𝐵 ↔ ∪ 𝑥 = 𝐵) |
| 24 | 8, 10, 23 | vtoclbg 3520 | . 2 ⊢ (𝐴 ∈ V → (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
| 25 | 2, 7, 24 | pm5.21nii 378 | 1 ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 ∪ cuni 4867 class class class wbr 5102 E cep 5530 × cxp 5629 ∘ ccom 5635 Bigcup cbigcup 35795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-symdif 4212 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-1st 7947 df-2nd 7948 df-txp 35815 df-bigcup 35819 |
| This theorem is referenced by: dfbigcup2 35860 fvbigcup 35863 ellimits 35871 brapply 35899 dfrdg4 35912 |
| Copyright terms: Public domain | W3C validator |