Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brbigcup Structured version   Visualization version   GIF version

Theorem brbigcup 33354
Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
brbigcup.1 𝐵 ∈ V
Assertion
Ref Expression
brbigcup (𝐴 Bigcup 𝐵 𝐴 = 𝐵)

Proof of Theorem brbigcup
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relbigcup 33353 . . 3 Rel Bigcup
21brrelex1i 5602 . 2 (𝐴 Bigcup 𝐵𝐴 ∈ V)
3 brbigcup.1 . . . 4 𝐵 ∈ V
4 eleq1 2900 . . . 4 ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V))
53, 4mpbiri 260 . . 3 ( 𝐴 = 𝐵 𝐴 ∈ V)
6 uniexb 7480 . . 3 (𝐴 ∈ V ↔ 𝐴 ∈ V)
75, 6sylibr 236 . 2 ( 𝐴 = 𝐵𝐴 ∈ V)
8 breq1 5061 . . 3 (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵𝐴 Bigcup 𝐵))
9 unieq 4839 . . . 4 (𝑥 = 𝐴 𝑥 = 𝐴)
109eqeq1d 2823 . . 3 (𝑥 = 𝐴 → ( 𝑥 = 𝐵 𝐴 = 𝐵))
11 vex 3497 . . . . 5 𝑥 ∈ V
12 df-bigcup 33314 . . . . 5 Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
13 brxp 5595 . . . . . 6 (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V))
1411, 3, 13mpbir2an 709 . . . . 5 𝑥(V × V)𝐵
15 epel 5463 . . . . . . 7 (𝑦 E 𝑧𝑦𝑧)
1615rexbii 3247 . . . . . 6 (∃𝑧𝑥 𝑦 E 𝑧 ↔ ∃𝑧𝑥 𝑦𝑧)
17 vex 3497 . . . . . . 7 𝑦 ∈ V
1817, 11coep 32982 . . . . . 6 (𝑦( E ∘ E )𝑥 ↔ ∃𝑧𝑥 𝑦 E 𝑧)
19 eluni2 4835 . . . . . 6 (𝑦 𝑥 ↔ ∃𝑧𝑥 𝑦𝑧)
2016, 18, 193bitr4ri 306 . . . . 5 (𝑦 𝑥𝑦( E ∘ E )𝑥)
2111, 3, 12, 14, 20brtxpsd3 33352 . . . 4 (𝑥 Bigcup 𝐵𝐵 = 𝑥)
22 eqcom 2828 . . . 4 (𝐵 = 𝑥 𝑥 = 𝐵)
2321, 22bitri 277 . . 3 (𝑥 Bigcup 𝐵 𝑥 = 𝐵)
248, 10, 23vtoclbg 3568 . 2 (𝐴 ∈ V → (𝐴 Bigcup 𝐵 𝐴 = 𝐵))
252, 7, 24pm5.21nii 382 1 (𝐴 Bigcup 𝐵 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1533  wcel 2110  wrex 3139  Vcvv 3494   cuni 4831   class class class wbr 5058   E cep 5458   × cxp 5547  ccom 5553   Bigcup cbigcup 33290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-symdif 4218  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-eprel 5459  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fo 6355  df-fv 6357  df-1st 7683  df-2nd 7684  df-txp 33310  df-bigcup 33314
This theorem is referenced by:  dfbigcup2  33355  fvbigcup  33358  ellimits  33366  brapply  33394  dfrdg4  33407
  Copyright terms: Public domain W3C validator