Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brbigcup Structured version   Visualization version   GIF version

Theorem brbigcup 35162
Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
brbigcup.1 𝐵 ∈ V
Assertion
Ref Expression
brbigcup (𝐴 Bigcup 𝐵 𝐴 = 𝐵)

Proof of Theorem brbigcup
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relbigcup 35161 . . 3 Rel Bigcup
21brrelex1i 5732 . 2 (𝐴 Bigcup 𝐵𝐴 ∈ V)
3 brbigcup.1 . . . 4 𝐵 ∈ V
4 eleq1 2821 . . . 4 ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V))
53, 4mpbiri 257 . . 3 ( 𝐴 = 𝐵 𝐴 ∈ V)
6 uniexb 7753 . . 3 (𝐴 ∈ V ↔ 𝐴 ∈ V)
75, 6sylibr 233 . 2 ( 𝐴 = 𝐵𝐴 ∈ V)
8 breq1 5151 . . 3 (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵𝐴 Bigcup 𝐵))
9 unieq 4919 . . . 4 (𝑥 = 𝐴 𝑥 = 𝐴)
109eqeq1d 2734 . . 3 (𝑥 = 𝐴 → ( 𝑥 = 𝐵 𝐴 = 𝐵))
11 vex 3478 . . . . 5 𝑥 ∈ V
12 df-bigcup 35122 . . . . 5 Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
13 brxp 5725 . . . . . 6 (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V))
1411, 3, 13mpbir2an 709 . . . . 5 𝑥(V × V)𝐵
15 epel 5583 . . . . . . 7 (𝑦 E 𝑧𝑦𝑧)
1615rexbii 3094 . . . . . 6 (∃𝑧𝑥 𝑦 E 𝑧 ↔ ∃𝑧𝑥 𝑦𝑧)
17 vex 3478 . . . . . . 7 𝑦 ∈ V
1817, 11coep 35014 . . . . . 6 (𝑦( E ∘ E )𝑥 ↔ ∃𝑧𝑥 𝑦 E 𝑧)
19 eluni2 4912 . . . . . 6 (𝑦 𝑥 ↔ ∃𝑧𝑥 𝑦𝑧)
2016, 18, 193bitr4ri 303 . . . . 5 (𝑦 𝑥𝑦( E ∘ E )𝑥)
2111, 3, 12, 14, 20brtxpsd3 35160 . . . 4 (𝑥 Bigcup 𝐵𝐵 = 𝑥)
22 eqcom 2739 . . . 4 (𝐵 = 𝑥 𝑥 = 𝐵)
2321, 22bitri 274 . . 3 (𝑥 Bigcup 𝐵 𝑥 = 𝐵)
248, 10, 23vtoclbg 3559 . 2 (𝐴 ∈ V → (𝐴 Bigcup 𝐵 𝐴 = 𝐵))
252, 7, 24pm5.21nii 379 1 (𝐴 Bigcup 𝐵 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474   cuni 4908   class class class wbr 5148   E cep 5579   × cxp 5674  ccom 5680   Bigcup cbigcup 35098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-symdif 4242  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-eprel 5580  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7977  df-2nd 7978  df-txp 35118  df-bigcup 35122
This theorem is referenced by:  dfbigcup2  35163  fvbigcup  35166  ellimits  35174  brapply  35202  dfrdg4  35215
  Copyright terms: Public domain W3C validator