Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brbigcup Structured version   Visualization version   GIF version

Theorem brbigcup 35859
Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
brbigcup.1 𝐵 ∈ V
Assertion
Ref Expression
brbigcup (𝐴 Bigcup 𝐵 𝐴 = 𝐵)

Proof of Theorem brbigcup
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relbigcup 35858 . . 3 Rel Bigcup
21brrelex1i 5687 . 2 (𝐴 Bigcup 𝐵𝐴 ∈ V)
3 brbigcup.1 . . . 4 𝐵 ∈ V
4 eleq1 2816 . . . 4 ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V))
53, 4mpbiri 258 . . 3 ( 𝐴 = 𝐵 𝐴 ∈ V)
6 uniexb 7720 . . 3 (𝐴 ∈ V ↔ 𝐴 ∈ V)
75, 6sylibr 234 . 2 ( 𝐴 = 𝐵𝐴 ∈ V)
8 breq1 5105 . . 3 (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵𝐴 Bigcup 𝐵))
9 unieq 4878 . . . 4 (𝑥 = 𝐴 𝑥 = 𝐴)
109eqeq1d 2731 . . 3 (𝑥 = 𝐴 → ( 𝑥 = 𝐵 𝐴 = 𝐵))
11 vex 3448 . . . . 5 𝑥 ∈ V
12 df-bigcup 35819 . . . . 5 Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
13 brxp 5680 . . . . . 6 (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V))
1411, 3, 13mpbir2an 711 . . . . 5 𝑥(V × V)𝐵
15 epel 5534 . . . . . . 7 (𝑦 E 𝑧𝑦𝑧)
1615rexbii 3076 . . . . . 6 (∃𝑧𝑥 𝑦 E 𝑧 ↔ ∃𝑧𝑥 𝑦𝑧)
17 vex 3448 . . . . . . 7 𝑦 ∈ V
1817, 11coep 35712 . . . . . 6 (𝑦( E ∘ E )𝑥 ↔ ∃𝑧𝑥 𝑦 E 𝑧)
19 eluni2 4871 . . . . . 6 (𝑦 𝑥 ↔ ∃𝑧𝑥 𝑦𝑧)
2016, 18, 193bitr4ri 304 . . . . 5 (𝑦 𝑥𝑦( E ∘ E )𝑥)
2111, 3, 12, 14, 20brtxpsd3 35857 . . . 4 (𝑥 Bigcup 𝐵𝐵 = 𝑥)
22 eqcom 2736 . . . 4 (𝐵 = 𝑥 𝑥 = 𝐵)
2321, 22bitri 275 . . 3 (𝑥 Bigcup 𝐵 𝑥 = 𝐵)
248, 10, 23vtoclbg 3520 . 2 (𝐴 ∈ V → (𝐴 Bigcup 𝐵 𝐴 = 𝐵))
252, 7, 24pm5.21nii 378 1 (𝐴 Bigcup 𝐵 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444   cuni 4867   class class class wbr 5102   E cep 5530   × cxp 5629  ccom 5635   Bigcup cbigcup 35795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-txp 35815  df-bigcup 35819
This theorem is referenced by:  dfbigcup2  35860  fvbigcup  35863  ellimits  35871  brapply  35899  dfrdg4  35912
  Copyright terms: Public domain W3C validator