| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brbigcup | Structured version Visualization version GIF version | ||
| Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| brbigcup.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brbigcup | ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relbigcup 35892 | . . 3 ⊢ Rel Bigcup | |
| 2 | 1 | brrelex1i 5697 | . 2 ⊢ (𝐴 Bigcup 𝐵 → 𝐴 ∈ V) |
| 3 | brbigcup.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | eleq1 2817 | . . . 4 ⊢ (∪ 𝐴 = 𝐵 → (∪ 𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
| 5 | 3, 4 | mpbiri 258 | . . 3 ⊢ (∪ 𝐴 = 𝐵 → ∪ 𝐴 ∈ V) |
| 6 | uniexb 7743 | . . 3 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ (∪ 𝐴 = 𝐵 → 𝐴 ∈ V) |
| 8 | breq1 5113 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵 ↔ 𝐴 Bigcup 𝐵)) | |
| 9 | unieq 4885 | . . . 4 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 10 | 9 | eqeq1d 2732 | . . 3 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 = 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
| 11 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | df-bigcup 35853 | . . . . 5 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
| 13 | brxp 5690 | . . . . . 6 ⊢ (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V)) | |
| 14 | 11, 3, 13 | mpbir2an 711 | . . . . 5 ⊢ 𝑥(V × V)𝐵 |
| 15 | epel 5544 | . . . . . . 7 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
| 16 | 15 | rexbii 3077 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝑥 𝑦 E 𝑧 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) |
| 17 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 18 | 17, 11 | coep 35746 | . . . . . 6 ⊢ (𝑦( E ∘ E )𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 E 𝑧) |
| 19 | eluni2 4878 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) | |
| 20 | 16, 18, 19 | 3bitr4ri 304 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ 𝑦( E ∘ E )𝑥) |
| 21 | 11, 3, 12, 14, 20 | brtxpsd3 35891 | . . . 4 ⊢ (𝑥 Bigcup 𝐵 ↔ 𝐵 = ∪ 𝑥) |
| 22 | eqcom 2737 | . . . 4 ⊢ (𝐵 = ∪ 𝑥 ↔ ∪ 𝑥 = 𝐵) | |
| 23 | 21, 22 | bitri 275 | . . 3 ⊢ (𝑥 Bigcup 𝐵 ↔ ∪ 𝑥 = 𝐵) |
| 24 | 8, 10, 23 | vtoclbg 3526 | . 2 ⊢ (𝐴 ∈ V → (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
| 25 | 2, 7, 24 | pm5.21nii 378 | 1 ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∪ cuni 4874 class class class wbr 5110 E cep 5540 × cxp 5639 ∘ ccom 5645 Bigcup cbigcup 35829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-symdif 4219 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-txp 35849 df-bigcup 35853 |
| This theorem is referenced by: dfbigcup2 35894 fvbigcup 35897 ellimits 35905 brapply 35933 dfrdg4 35946 |
| Copyright terms: Public domain | W3C validator |