Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brbigcup Structured version   Visualization version   GIF version

Theorem brbigcup 35862
Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
brbigcup.1 𝐵 ∈ V
Assertion
Ref Expression
brbigcup (𝐴 Bigcup 𝐵 𝐴 = 𝐵)

Proof of Theorem brbigcup
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relbigcup 35861 . . 3 Rel Bigcup
21brrelex1i 5756 . 2 (𝐴 Bigcup 𝐵𝐴 ∈ V)
3 brbigcup.1 . . . 4 𝐵 ∈ V
4 eleq1 2832 . . . 4 ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V))
53, 4mpbiri 258 . . 3 ( 𝐴 = 𝐵 𝐴 ∈ V)
6 uniexb 7799 . . 3 (𝐴 ∈ V ↔ 𝐴 ∈ V)
75, 6sylibr 234 . 2 ( 𝐴 = 𝐵𝐴 ∈ V)
8 breq1 5169 . . 3 (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵𝐴 Bigcup 𝐵))
9 unieq 4942 . . . 4 (𝑥 = 𝐴 𝑥 = 𝐴)
109eqeq1d 2742 . . 3 (𝑥 = 𝐴 → ( 𝑥 = 𝐵 𝐴 = 𝐵))
11 vex 3492 . . . . 5 𝑥 ∈ V
12 df-bigcup 35822 . . . . 5 Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
13 brxp 5749 . . . . . 6 (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V))
1411, 3, 13mpbir2an 710 . . . . 5 𝑥(V × V)𝐵
15 epel 5602 . . . . . . 7 (𝑦 E 𝑧𝑦𝑧)
1615rexbii 3100 . . . . . 6 (∃𝑧𝑥 𝑦 E 𝑧 ↔ ∃𝑧𝑥 𝑦𝑧)
17 vex 3492 . . . . . . 7 𝑦 ∈ V
1817, 11coep 35714 . . . . . 6 (𝑦( E ∘ E )𝑥 ↔ ∃𝑧𝑥 𝑦 E 𝑧)
19 eluni2 4935 . . . . . 6 (𝑦 𝑥 ↔ ∃𝑧𝑥 𝑦𝑧)
2016, 18, 193bitr4ri 304 . . . . 5 (𝑦 𝑥𝑦( E ∘ E )𝑥)
2111, 3, 12, 14, 20brtxpsd3 35860 . . . 4 (𝑥 Bigcup 𝐵𝐵 = 𝑥)
22 eqcom 2747 . . . 4 (𝐵 = 𝑥 𝑥 = 𝐵)
2321, 22bitri 275 . . 3 (𝑥 Bigcup 𝐵 𝑥 = 𝐵)
248, 10, 23vtoclbg 3569 . 2 (𝐴 ∈ V → (𝐴 Bigcup 𝐵 𝐴 = 𝐵))
252, 7, 24pm5.21nii 378 1 (𝐴 Bigcup 𝐵 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488   cuni 4931   class class class wbr 5166   E cep 5598   × cxp 5698  ccom 5704   Bigcup cbigcup 35798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-txp 35818  df-bigcup 35822
This theorem is referenced by:  dfbigcup2  35863  fvbigcup  35866  ellimits  35874  brapply  35902  dfrdg4  35915
  Copyright terms: Public domain W3C validator