![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brbigcup | Structured version Visualization version GIF version |
Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
brbigcup.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brbigcup | ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relbigcup 35161 | . . 3 ⊢ Rel Bigcup | |
2 | 1 | brrelex1i 5732 | . 2 ⊢ (𝐴 Bigcup 𝐵 → 𝐴 ∈ V) |
3 | brbigcup.1 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | eleq1 2821 | . . . 4 ⊢ (∪ 𝐴 = 𝐵 → (∪ 𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
5 | 3, 4 | mpbiri 257 | . . 3 ⊢ (∪ 𝐴 = 𝐵 → ∪ 𝐴 ∈ V) |
6 | uniexb 7753 | . . 3 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
7 | 5, 6 | sylibr 233 | . 2 ⊢ (∪ 𝐴 = 𝐵 → 𝐴 ∈ V) |
8 | breq1 5151 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵 ↔ 𝐴 Bigcup 𝐵)) | |
9 | unieq 4919 | . . . 4 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
10 | 9 | eqeq1d 2734 | . . 3 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 = 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
11 | vex 3478 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | df-bigcup 35122 | . . . . 5 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
13 | brxp 5725 | . . . . . 6 ⊢ (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V)) | |
14 | 11, 3, 13 | mpbir2an 709 | . . . . 5 ⊢ 𝑥(V × V)𝐵 |
15 | epel 5583 | . . . . . . 7 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
16 | 15 | rexbii 3094 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝑥 𝑦 E 𝑧 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) |
17 | vex 3478 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
18 | 17, 11 | coep 35014 | . . . . . 6 ⊢ (𝑦( E ∘ E )𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 E 𝑧) |
19 | eluni2 4912 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) | |
20 | 16, 18, 19 | 3bitr4ri 303 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ 𝑦( E ∘ E )𝑥) |
21 | 11, 3, 12, 14, 20 | brtxpsd3 35160 | . . . 4 ⊢ (𝑥 Bigcup 𝐵 ↔ 𝐵 = ∪ 𝑥) |
22 | eqcom 2739 | . . . 4 ⊢ (𝐵 = ∪ 𝑥 ↔ ∪ 𝑥 = 𝐵) | |
23 | 21, 22 | bitri 274 | . . 3 ⊢ (𝑥 Bigcup 𝐵 ↔ ∪ 𝑥 = 𝐵) |
24 | 8, 10, 23 | vtoclbg 3559 | . 2 ⊢ (𝐴 ∈ V → (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
25 | 2, 7, 24 | pm5.21nii 379 | 1 ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ∪ cuni 4908 class class class wbr 5148 E cep 5579 × cxp 5674 ∘ ccom 5680 Bigcup cbigcup 35098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-symdif 4242 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7977 df-2nd 7978 df-txp 35118 df-bigcup 35122 |
This theorem is referenced by: dfbigcup2 35163 fvbigcup 35166 ellimits 35174 brapply 35202 dfrdg4 35215 |
Copyright terms: Public domain | W3C validator |