Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brbigcup Structured version   Visualization version   GIF version

Theorem brbigcup 34200
Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
brbigcup.1 𝐵 ∈ V
Assertion
Ref Expression
brbigcup (𝐴 Bigcup 𝐵 𝐴 = 𝐵)

Proof of Theorem brbigcup
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relbigcup 34199 . . 3 Rel Bigcup
21brrelex1i 5643 . 2 (𝐴 Bigcup 𝐵𝐴 ∈ V)
3 brbigcup.1 . . . 4 𝐵 ∈ V
4 eleq1 2826 . . . 4 ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V))
53, 4mpbiri 257 . . 3 ( 𝐴 = 𝐵 𝐴 ∈ V)
6 uniexb 7614 . . 3 (𝐴 ∈ V ↔ 𝐴 ∈ V)
75, 6sylibr 233 . 2 ( 𝐴 = 𝐵𝐴 ∈ V)
8 breq1 5077 . . 3 (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵𝐴 Bigcup 𝐵))
9 unieq 4850 . . . 4 (𝑥 = 𝐴 𝑥 = 𝐴)
109eqeq1d 2740 . . 3 (𝑥 = 𝐴 → ( 𝑥 = 𝐵 𝐴 = 𝐵))
11 vex 3436 . . . . 5 𝑥 ∈ V
12 df-bigcup 34160 . . . . 5 Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
13 brxp 5636 . . . . . 6 (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V))
1411, 3, 13mpbir2an 708 . . . . 5 𝑥(V × V)𝐵
15 epel 5498 . . . . . . 7 (𝑦 E 𝑧𝑦𝑧)
1615rexbii 3181 . . . . . 6 (∃𝑧𝑥 𝑦 E 𝑧 ↔ ∃𝑧𝑥 𝑦𝑧)
17 vex 3436 . . . . . . 7 𝑦 ∈ V
1817, 11coep 33719 . . . . . 6 (𝑦( E ∘ E )𝑥 ↔ ∃𝑧𝑥 𝑦 E 𝑧)
19 eluni2 4843 . . . . . 6 (𝑦 𝑥 ↔ ∃𝑧𝑥 𝑦𝑧)
2016, 18, 193bitr4ri 304 . . . . 5 (𝑦 𝑥𝑦( E ∘ E )𝑥)
2111, 3, 12, 14, 20brtxpsd3 34198 . . . 4 (𝑥 Bigcup 𝐵𝐵 = 𝑥)
22 eqcom 2745 . . . 4 (𝐵 = 𝑥 𝑥 = 𝐵)
2321, 22bitri 274 . . 3 (𝑥 Bigcup 𝐵 𝑥 = 𝐵)
248, 10, 23vtoclbg 3507 . 2 (𝐴 ∈ V → (𝐴 Bigcup 𝐵 𝐴 = 𝐵))
252, 7, 24pm5.21nii 380 1 (𝐴 Bigcup 𝐵 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432   cuni 4839   class class class wbr 5074   E cep 5494   × cxp 5587  ccom 5593   Bigcup cbigcup 34136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-2nd 7832  df-txp 34156  df-bigcup 34160
This theorem is referenced by:  dfbigcup2  34201  fvbigcup  34204  ellimits  34212  brapply  34240  dfrdg4  34253
  Copyright terms: Public domain W3C validator