| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brbigcup | Structured version Visualization version GIF version | ||
| Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| brbigcup.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brbigcup | ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relbigcup 35915 | . . 3 ⊢ Rel Bigcup | |
| 2 | 1 | brrelex1i 5710 | . 2 ⊢ (𝐴 Bigcup 𝐵 → 𝐴 ∈ V) |
| 3 | brbigcup.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | eleq1 2822 | . . . 4 ⊢ (∪ 𝐴 = 𝐵 → (∪ 𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
| 5 | 3, 4 | mpbiri 258 | . . 3 ⊢ (∪ 𝐴 = 𝐵 → ∪ 𝐴 ∈ V) |
| 6 | uniexb 7758 | . . 3 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ (∪ 𝐴 = 𝐵 → 𝐴 ∈ V) |
| 8 | breq1 5122 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵 ↔ 𝐴 Bigcup 𝐵)) | |
| 9 | unieq 4894 | . . . 4 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 10 | 9 | eqeq1d 2737 | . . 3 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 = 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
| 11 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | df-bigcup 35876 | . . . . 5 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
| 13 | brxp 5703 | . . . . . 6 ⊢ (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V)) | |
| 14 | 11, 3, 13 | mpbir2an 711 | . . . . 5 ⊢ 𝑥(V × V)𝐵 |
| 15 | epel 5556 | . . . . . . 7 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
| 16 | 15 | rexbii 3083 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝑥 𝑦 E 𝑧 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) |
| 17 | vex 3463 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 18 | 17, 11 | coep 35769 | . . . . . 6 ⊢ (𝑦( E ∘ E )𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 E 𝑧) |
| 19 | eluni2 4887 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) | |
| 20 | 16, 18, 19 | 3bitr4ri 304 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ 𝑦( E ∘ E )𝑥) |
| 21 | 11, 3, 12, 14, 20 | brtxpsd3 35914 | . . . 4 ⊢ (𝑥 Bigcup 𝐵 ↔ 𝐵 = ∪ 𝑥) |
| 22 | eqcom 2742 | . . . 4 ⊢ (𝐵 = ∪ 𝑥 ↔ ∪ 𝑥 = 𝐵) | |
| 23 | 21, 22 | bitri 275 | . . 3 ⊢ (𝑥 Bigcup 𝐵 ↔ ∪ 𝑥 = 𝐵) |
| 24 | 8, 10, 23 | vtoclbg 3536 | . 2 ⊢ (𝐴 ∈ V → (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
| 25 | 2, 7, 24 | pm5.21nii 378 | 1 ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ∪ cuni 4883 class class class wbr 5119 E cep 5552 × cxp 5652 ∘ ccom 5658 Bigcup cbigcup 35852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-symdif 4228 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-1st 7988 df-2nd 7989 df-txp 35872 df-bigcup 35876 |
| This theorem is referenced by: dfbigcup2 35917 fvbigcup 35920 ellimits 35928 brapply 35956 dfrdg4 35969 |
| Copyright terms: Public domain | W3C validator |