![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relbigcup | Structured version Visualization version GIF version |
Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
relbigcup | ⊢ Rel Bigcup |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5718 | . . 3 ⊢ Rel (V × V) | |
2 | reldif 5839 | . . 3 ⊢ (Rel (V × V) → Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) |
4 | df-bigcup 35822 | . . 3 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
5 | 4 | releqi 5801 | . 2 ⊢ (Rel Bigcup ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) |
6 | 3, 5 | mpbir 231 | 1 ⊢ Rel Bigcup |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 ∖ cdif 3973 △ csymdif 4271 E cep 5598 × cxp 5698 ran crn 5701 ∘ ccom 5704 Rel wrel 5705 ⊗ ctxp 35794 Bigcup cbigcup 35798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-bigcup 35822 |
This theorem is referenced by: brbigcup 35862 dfbigcup2 35863 |
Copyright terms: Public domain | W3C validator |