Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relbigcup Structured version   Visualization version   GIF version

Theorem relbigcup 34248
Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
relbigcup Rel Bigcup

Proof of Theorem relbigcup
StepHypRef Expression
1 relxp 5618 . . 3 Rel (V × V)
2 reldif 5737 . . 3 (Rel (V × V) → Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))))
31, 2ax-mp 5 . 2 Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
4 df-bigcup 34209 . . 3 Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
54releqi 5699 . 2 (Rel Bigcup ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))))
63, 5mpbir 230 1 Rel Bigcup
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3437  cdif 3889  csymdif 4181   E cep 5505   × cxp 5598  ran crn 5601  ccom 5604  Rel wrel 5605  ctxp 34181   Bigcup cbigcup 34185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-dif 3895  df-in 3899  df-ss 3909  df-opab 5144  df-xp 5606  df-rel 5607  df-bigcup 34209
This theorem is referenced by:  brbigcup  34249  dfbigcup2  34250
  Copyright terms: Public domain W3C validator