| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relbigcup | Structured version Visualization version GIF version | ||
| Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| relbigcup | ⊢ Rel Bigcup |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5632 | . . 3 ⊢ Rel (V × V) | |
| 2 | reldif 5754 | . . 3 ⊢ (Rel (V × V) → Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) |
| 4 | df-bigcup 35900 | . . 3 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
| 5 | 4 | releqi 5717 | . 2 ⊢ (Rel Bigcup ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) |
| 6 | 3, 5 | mpbir 231 | 1 ⊢ Rel Bigcup |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∖ cdif 3894 △ csymdif 4199 E cep 5513 × cxp 5612 ran crn 5615 ∘ ccom 5618 Rel wrel 5619 ⊗ ctxp 35872 Bigcup cbigcup 35876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-bigcup 35900 |
| This theorem is referenced by: brbigcup 35940 dfbigcup2 35941 |
| Copyright terms: Public domain | W3C validator |