| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relbigcup | Structured version Visualization version GIF version | ||
| Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| relbigcup | ⊢ Rel Bigcup |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5649 | . . 3 ⊢ Rel (V × V) | |
| 2 | reldif 5769 | . . 3 ⊢ (Rel (V × V) → Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) |
| 4 | df-bigcup 35839 | . . 3 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
| 5 | 4 | releqi 5732 | . 2 ⊢ (Rel Bigcup ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) |
| 6 | 3, 5 | mpbir 231 | 1 ⊢ Rel Bigcup |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3444 ∖ cdif 3908 △ csymdif 4211 E cep 5530 × cxp 5629 ran crn 5632 ∘ ccom 5635 Rel wrel 5636 ⊗ ctxp 35811 Bigcup cbigcup 35815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-bigcup 35839 |
| This theorem is referenced by: brbigcup 35879 dfbigcup2 35880 |
| Copyright terms: Public domain | W3C validator |