Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relbigcup | Structured version Visualization version GIF version |
Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
relbigcup | ⊢ Rel Bigcup |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5543 | . . 3 ⊢ Rel (V × V) | |
2 | reldif 5659 | . . 3 ⊢ (Rel (V × V) → Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) |
4 | df-bigcup 33798 | . . 3 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
5 | 4 | releqi 5623 | . 2 ⊢ (Rel Bigcup ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) |
6 | 3, 5 | mpbir 234 | 1 ⊢ Rel Bigcup |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3398 ∖ cdif 3840 △ csymdif 4132 E cep 5433 × cxp 5523 ran crn 5526 ∘ ccom 5529 Rel wrel 5530 ⊗ ctxp 33770 Bigcup cbigcup 33774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-dif 3846 df-in 3850 df-ss 3860 df-opab 5093 df-xp 5531 df-rel 5532 df-bigcup 33798 |
This theorem is referenced by: brbigcup 33838 dfbigcup2 33839 |
Copyright terms: Public domain | W3C validator |