Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relbigcup | Structured version Visualization version GIF version |
Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
relbigcup | ⊢ Rel Bigcup |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5606 | . . 3 ⊢ Rel (V × V) | |
2 | reldif 5722 | . . 3 ⊢ (Rel (V × V) → Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) |
4 | df-bigcup 34139 | . . 3 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
5 | 4 | releqi 5686 | . 2 ⊢ (Rel Bigcup ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) |
6 | 3, 5 | mpbir 230 | 1 ⊢ Rel Bigcup |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3430 ∖ cdif 3888 △ csymdif 4180 E cep 5493 × cxp 5586 ran crn 5589 ∘ ccom 5592 Rel wrel 5593 ⊗ ctxp 34111 Bigcup cbigcup 34115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-opab 5141 df-xp 5594 df-rel 5595 df-bigcup 34139 |
This theorem is referenced by: brbigcup 34179 dfbigcup2 34180 |
Copyright terms: Public domain | W3C validator |