Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relbigcup Structured version   Visualization version   GIF version

Theorem relbigcup 35170
Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
relbigcup Rel Bigcup

Proof of Theorem relbigcup
StepHypRef Expression
1 relxp 5695 . . 3 Rel (V × V)
2 reldif 5816 . . 3 (Rel (V × V) → Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))))
31, 2ax-mp 5 . 2 Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
4 df-bigcup 35131 . . 3 Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
54releqi 5778 . 2 (Rel Bigcup ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))))
63, 5mpbir 230 1 Rel Bigcup
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3473  cdif 3946  csymdif 4242   E cep 5580   × cxp 5675  ran crn 5678  ccom 5681  Rel wrel 5682  ctxp 35103   Bigcup cbigcup 35107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3952  df-in 3956  df-ss 3966  df-opab 5212  df-xp 5683  df-rel 5684  df-bigcup 35131
This theorem is referenced by:  brbigcup  35171  dfbigcup2  35172
  Copyright terms: Public domain W3C validator