Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relbigcup Structured version   Visualization version   GIF version

Theorem relbigcup 35875
Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
relbigcup Rel Bigcup

Proof of Theorem relbigcup
StepHypRef Expression
1 relxp 5637 . . 3 Rel (V × V)
2 reldif 5758 . . 3 (Rel (V × V) → Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))))
31, 2ax-mp 5 . 2 Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
4 df-bigcup 35836 . . 3 Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
54releqi 5721 . 2 (Rel Bigcup ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))))
63, 5mpbir 231 1 Rel Bigcup
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  cdif 3900  csymdif 4203   E cep 5518   × cxp 5617  ran crn 5620  ccom 5623  Rel wrel 5624  ctxp 35808   Bigcup cbigcup 35812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-dif 3906  df-ss 3920  df-opab 5155  df-xp 5625  df-rel 5626  df-bigcup 35836
This theorem is referenced by:  brbigcup  35876  dfbigcup2  35877
  Copyright terms: Public domain W3C validator