Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relbigcup | Structured version Visualization version GIF version |
Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
relbigcup | ⊢ Rel Bigcup |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5618 | . . 3 ⊢ Rel (V × V) | |
2 | reldif 5737 | . . 3 ⊢ (Rel (V × V) → Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) |
4 | df-bigcup 34209 | . . 3 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
5 | 4 | releqi 5699 | . 2 ⊢ (Rel Bigcup ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) |
6 | 3, 5 | mpbir 230 | 1 ⊢ Rel Bigcup |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3437 ∖ cdif 3889 △ csymdif 4181 E cep 5505 × cxp 5598 ran crn 5601 ∘ ccom 5604 Rel wrel 5605 ⊗ ctxp 34181 Bigcup cbigcup 34185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-dif 3895 df-in 3899 df-ss 3909 df-opab 5144 df-xp 5606 df-rel 5607 df-bigcup 34209 |
This theorem is referenced by: brbigcup 34249 dfbigcup2 34250 |
Copyright terms: Public domain | W3C validator |