![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relbigcup | Structured version Visualization version GIF version |
Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
relbigcup | ⊢ Rel Bigcup |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5360 | . . 3 ⊢ Rel (V × V) | |
2 | reldif 5473 | . . 3 ⊢ (Rel (V × V) → Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) |
4 | df-bigcup 32504 | . . 3 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
5 | 4 | releqi 5437 | . 2 ⊢ (Rel Bigcup ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) |
6 | 3, 5 | mpbir 223 | 1 ⊢ Rel Bigcup |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3414 ∖ cdif 3795 △ csymdif 4069 E cep 5254 × cxp 5340 ran crn 5343 ∘ ccom 5346 Rel wrel 5347 ⊗ ctxp 32476 Bigcup cbigcup 32480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-dif 3801 df-in 3805 df-ss 3812 df-opab 4936 df-xp 5348 df-rel 5349 df-bigcup 32504 |
This theorem is referenced by: brbigcup 32544 dfbigcup2 32545 |
Copyright terms: Public domain | W3C validator |