| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvbigcup | Structured version Visualization version GIF version | ||
| Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| fvbigcup.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| fvbigcup | ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 2 | fvbigcup.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 3 | 2 | uniex 7674 | . . . 4 ⊢ ∪ 𝐴 ∈ V |
| 4 | 3 | brbigcup 35940 | . . 3 ⊢ (𝐴 Bigcup ∪ 𝐴 ↔ ∪ 𝐴 = ∪ 𝐴) |
| 5 | 1, 4 | mpbir 231 | . 2 ⊢ 𝐴 Bigcup ∪ 𝐴 |
| 6 | fnbigcup 35943 | . . 3 ⊢ Bigcup Fn V | |
| 7 | fnbrfvb 6872 | . . 3 ⊢ (( Bigcup Fn V ∧ 𝐴 ∈ V) → (( Bigcup ‘𝐴) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴)) | |
| 8 | 6, 2, 7 | mp2an 692 | . 2 ⊢ (( Bigcup ‘𝐴) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴) |
| 9 | 5, 8 | mpbir 231 | 1 ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cuni 4856 class class class wbr 5089 Fn wfn 6476 ‘cfv 6481 Bigcup cbigcup 35876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-symdif 4200 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35896 df-bigcup 35900 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |