Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvbigcup | Structured version Visualization version GIF version |
Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
fvbigcup.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
fvbigcup | ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
2 | fvbigcup.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
3 | 2 | uniex 7572 | . . . 4 ⊢ ∪ 𝐴 ∈ V |
4 | 3 | brbigcup 34127 | . . 3 ⊢ (𝐴 Bigcup ∪ 𝐴 ↔ ∪ 𝐴 = ∪ 𝐴) |
5 | 1, 4 | mpbir 230 | . 2 ⊢ 𝐴 Bigcup ∪ 𝐴 |
6 | fnbigcup 34130 | . . 3 ⊢ Bigcup Fn V | |
7 | fnbrfvb 6804 | . . 3 ⊢ (( Bigcup Fn V ∧ 𝐴 ∈ V) → (( Bigcup ‘𝐴) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴)) | |
8 | 6, 2, 7 | mp2an 688 | . 2 ⊢ (( Bigcup ‘𝐴) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴) |
9 | 5, 8 | mpbir 230 | 1 ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cuni 4836 class class class wbr 5070 Fn wfn 6413 ‘cfv 6418 Bigcup cbigcup 34063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-eprel 5486 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-txp 34083 df-bigcup 34087 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |