| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvbigcup | Structured version Visualization version GIF version | ||
| Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| fvbigcup.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| fvbigcup | ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 2 | fvbigcup.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 3 | 2 | uniex 7697 | . . . 4 ⊢ ∪ 𝐴 ∈ V |
| 4 | 3 | brbigcup 35859 | . . 3 ⊢ (𝐴 Bigcup ∪ 𝐴 ↔ ∪ 𝐴 = ∪ 𝐴) |
| 5 | 1, 4 | mpbir 231 | . 2 ⊢ 𝐴 Bigcup ∪ 𝐴 |
| 6 | fnbigcup 35862 | . . 3 ⊢ Bigcup Fn V | |
| 7 | fnbrfvb 6893 | . . 3 ⊢ (( Bigcup Fn V ∧ 𝐴 ∈ V) → (( Bigcup ‘𝐴) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴)) | |
| 8 | 6, 2, 7 | mp2an 692 | . 2 ⊢ (( Bigcup ‘𝐴) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴) |
| 9 | 5, 8 | mpbir 231 | 1 ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 class class class wbr 5102 Fn wfn 6494 ‘cfv 6499 Bigcup cbigcup 35795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-symdif 4212 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-1st 7947 df-2nd 7948 df-txp 35815 df-bigcup 35819 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |