Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvbigcup | Structured version Visualization version GIF version |
Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
fvbigcup.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
fvbigcup | ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
2 | fvbigcup.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
3 | 2 | uniex 7594 | . . . 4 ⊢ ∪ 𝐴 ∈ V |
4 | 3 | brbigcup 34200 | . . 3 ⊢ (𝐴 Bigcup ∪ 𝐴 ↔ ∪ 𝐴 = ∪ 𝐴) |
5 | 1, 4 | mpbir 230 | . 2 ⊢ 𝐴 Bigcup ∪ 𝐴 |
6 | fnbigcup 34203 | . . 3 ⊢ Bigcup Fn V | |
7 | fnbrfvb 6822 | . . 3 ⊢ (( Bigcup Fn V ∧ 𝐴 ∈ V) → (( Bigcup ‘𝐴) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴)) | |
8 | 6, 2, 7 | mp2an 689 | . 2 ⊢ (( Bigcup ‘𝐴) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴) |
9 | 5, 8 | mpbir 230 | 1 ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 class class class wbr 5074 Fn wfn 6428 ‘cfv 6433 Bigcup cbigcup 34136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-symdif 4176 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-txp 34156 df-bigcup 34160 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |