![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvbigcup | Structured version Visualization version GIF version |
Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
fvbigcup.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
fvbigcup | ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
2 | fvbigcup.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
3 | 2 | uniex 7776 | . . . 4 ⊢ ∪ 𝐴 ∈ V |
4 | 3 | brbigcup 35862 | . . 3 ⊢ (𝐴 Bigcup ∪ 𝐴 ↔ ∪ 𝐴 = ∪ 𝐴) |
5 | 1, 4 | mpbir 231 | . 2 ⊢ 𝐴 Bigcup ∪ 𝐴 |
6 | fnbigcup 35865 | . . 3 ⊢ Bigcup Fn V | |
7 | fnbrfvb 6973 | . . 3 ⊢ (( Bigcup Fn V ∧ 𝐴 ∈ V) → (( Bigcup ‘𝐴) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴)) | |
8 | 6, 2, 7 | mp2an 691 | . 2 ⊢ (( Bigcup ‘𝐴) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴) |
9 | 5, 8 | mpbir 231 | 1 ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cuni 4931 class class class wbr 5166 Fn wfn 6568 ‘cfv 6573 Bigcup cbigcup 35798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-symdif 4272 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-2nd 8031 df-txp 35818 df-bigcup 35822 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |