Detailed syntax breakdown of Definition df-bigo
Step | Hyp | Ref
| Expression |
1 | | cbigo 45893 |
. 2
class
Ο |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cr 10870 |
. . . 4
class
ℝ |
4 | | cpm 8616 |
. . . 4
class
↑pm |
5 | 3, 3, 4 | co 7275 |
. . 3
class (ℝ
↑pm ℝ) |
6 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
7 | 6 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
8 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
9 | 8 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
10 | 7, 9 | cfv 6433 |
. . . . . . . 8
class (𝑓‘𝑦) |
11 | | vm |
. . . . . . . . . 10
setvar 𝑚 |
12 | 11 | cv 1538 |
. . . . . . . . 9
class 𝑚 |
13 | 2 | cv 1538 |
. . . . . . . . . 10
class 𝑔 |
14 | 7, 13 | cfv 6433 |
. . . . . . . . 9
class (𝑔‘𝑦) |
15 | | cmul 10876 |
. . . . . . . . 9
class
· |
16 | 12, 14, 15 | co 7275 |
. . . . . . . 8
class (𝑚 · (𝑔‘𝑦)) |
17 | | cle 11010 |
. . . . . . . 8
class
≤ |
18 | 10, 16, 17 | wbr 5074 |
. . . . . . 7
wff (𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦)) |
19 | 9 | cdm 5589 |
. . . . . . . 8
class dom 𝑓 |
20 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
21 | 20 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
22 | | cpnf 11006 |
. . . . . . . . 9
class
+∞ |
23 | | cico 13081 |
. . . . . . . . 9
class
[,) |
24 | 21, 22, 23 | co 7275 |
. . . . . . . 8
class (𝑥[,)+∞) |
25 | 19, 24 | cin 3886 |
. . . . . . 7
class (dom
𝑓 ∩ (𝑥[,)+∞)) |
26 | 18, 6, 25 | wral 3064 |
. . . . . 6
wff
∀𝑦 ∈
(dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦)) |
27 | 26, 11, 3 | wrex 3065 |
. . . . 5
wff
∃𝑚 ∈
ℝ ∀𝑦 ∈
(dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦)) |
28 | 27, 20, 3 | wrex 3065 |
. . . 4
wff
∃𝑥 ∈
ℝ ∃𝑚 ∈
ℝ ∀𝑦 ∈
(dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦)) |
29 | 28, 8, 5 | crab 3068 |
. . 3
class {𝑓 ∈ (ℝ
↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦))} |
30 | 2, 5, 29 | cmpt 5157 |
. 2
class (𝑔 ∈ (ℝ
↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ)
∣ ∃𝑥 ∈
ℝ ∃𝑚 ∈
ℝ ∀𝑦 ∈
(dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦))}) |
31 | 1, 30 | wceq 1539 |
1
wff Ο =
(𝑔 ∈ (ℝ
↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ)
∣ ∃𝑥 ∈
ℝ ∃𝑚 ∈
ℝ ∀𝑦 ∈
(dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦))}) |