| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bigoval | Structured version Visualization version GIF version | ||
| Description: Set of functions of order G(x). (Contributed by AV, 15-May-2020.) |
| Ref | Expression |
|---|---|
| bigoval | ⊢ (𝐺 ∈ (ℝ ↑pm ℝ) → (Ο‘𝐺) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6839 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑦) = (𝐺‘𝑦)) | |
| 2 | 1 | oveq2d 7385 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑚 · (𝑔‘𝑦)) = (𝑚 · (𝐺‘𝑦))) |
| 3 | 2 | breq2d 5114 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦)) ↔ (𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
| 4 | 3 | ralbidv 3156 | . . . 4 ⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦)) ↔ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
| 5 | 4 | 2rexbidv 3200 | . . 3 ⊢ (𝑔 = 𝐺 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
| 6 | 5 | rabbidv 3410 | . 2 ⊢ (𝑔 = 𝐺 → {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦))} = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))}) |
| 7 | df-bigo 48510 | . 2 ⊢ Ο = (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦))}) | |
| 8 | ovex 7402 | . . 3 ⊢ (ℝ ↑pm ℝ) ∈ V | |
| 9 | 8 | rabex 5289 | . 2 ⊢ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))} ∈ V |
| 10 | 6, 7, 9 | fvmpt 6950 | 1 ⊢ (𝐺 ∈ (ℝ ↑pm ℝ) → (Ο‘𝐺) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3402 ∩ cin 3910 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 ↑pm cpm 8777 ℝcr 11043 · cmul 11049 +∞cpnf 11181 ≤ cle 11185 [,)cico 13284 Οcbigo 48509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-bigo 48510 |
| This theorem is referenced by: elbigo 48513 |
| Copyright terms: Public domain | W3C validator |