Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bigoval Structured version   Visualization version   GIF version

Theorem bigoval 43142
 Description: Set of functions of order G(x). (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
bigoval (𝐺 ∈ (ℝ ↑pm ℝ) → (Ο‘𝐺) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))})
Distinct variable group:   𝑓,𝐺,𝑥,𝑚,𝑦

Proof of Theorem bigoval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-bigo 43141 . . 3 Ο = (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))})
21a1i 11 . 2 (𝐺 ∈ (ℝ ↑pm ℝ) → Ο = (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))}))
3 fveq1 6410 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔𝑦) = (𝐺𝑦))
43oveq2d 6894 . . . . . . 7 (𝑔 = 𝐺 → (𝑚 · (𝑔𝑦)) = (𝑚 · (𝐺𝑦)))
54breq2d 4855 . . . . . 6 (𝑔 = 𝐺 → ((𝑓𝑦) ≤ (𝑚 · (𝑔𝑦)) ↔ (𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))))
65ralbidv 3167 . . . . 5 (𝑔 = 𝐺 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦)) ↔ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))))
762rexbidv 3238 . . . 4 (𝑔 = 𝐺 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))))
87rabbidv 3373 . . 3 (𝑔 = 𝐺 → {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))} = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))})
98adantl 474 . 2 ((𝐺 ∈ (ℝ ↑pm ℝ) ∧ 𝑔 = 𝐺) → {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))} = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))})
10 id 22 . 2 (𝐺 ∈ (ℝ ↑pm ℝ) → 𝐺 ∈ (ℝ ↑pm ℝ))
11 ovex 6910 . . . 4 (ℝ ↑pm ℝ) ∈ V
1211rabex 5007 . . 3 {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))} ∈ V
1312a1i 11 . 2 (𝐺 ∈ (ℝ ↑pm ℝ) → {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))} ∈ V)
142, 9, 10, 13fvmptd 6513 1 (𝐺 ∈ (ℝ ↑pm ℝ) → (Ο‘𝐺) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1653   ∈ wcel 2157  ∀wral 3089  ∃wrex 3090  {crab 3093  Vcvv 3385   ∩ cin 3768   class class class wbr 4843   ↦ cmpt 4922  dom cdm 5312  ‘cfv 6101  (class class class)co 6878   ↑pm cpm 8096  ℝcr 10223   · cmul 10229  +∞cpnf 10360   ≤ cle 10364  [,)cico 12426  Οcbigo 43140 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-iota 6064  df-fun 6103  df-fv 6109  df-ov 6881  df-bigo 43141 This theorem is referenced by:  elbigo  43144
 Copyright terms: Public domain W3C validator