| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bigoval | Structured version Visualization version GIF version | ||
| Description: Set of functions of order G(x). (Contributed by AV, 15-May-2020.) |
| Ref | Expression |
|---|---|
| bigoval | ⊢ (𝐺 ∈ (ℝ ↑pm ℝ) → (Ο‘𝐺) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6816 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑦) = (𝐺‘𝑦)) | |
| 2 | 1 | oveq2d 7357 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑚 · (𝑔‘𝑦)) = (𝑚 · (𝐺‘𝑦))) |
| 3 | 2 | breq2d 5098 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦)) ↔ (𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
| 4 | 3 | ralbidv 3155 | . . . 4 ⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦)) ↔ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
| 5 | 4 | 2rexbidv 3197 | . . 3 ⊢ (𝑔 = 𝐺 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
| 6 | 5 | rabbidv 3402 | . 2 ⊢ (𝑔 = 𝐺 → {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦))} = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))}) |
| 7 | df-bigo 48580 | . 2 ⊢ Ο = (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦))}) | |
| 8 | ovex 7374 | . . 3 ⊢ (ℝ ↑pm ℝ) ∈ V | |
| 9 | 8 | rabex 5272 | . 2 ⊢ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))} ∈ V |
| 10 | 6, 7, 9 | fvmpt 6924 | 1 ⊢ (𝐺 ∈ (ℝ ↑pm ℝ) → (Ο‘𝐺) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 ∩ cin 3896 class class class wbr 5086 dom cdm 5611 ‘cfv 6476 (class class class)co 7341 ↑pm cpm 8746 ℝcr 11000 · cmul 11006 +∞cpnf 11138 ≤ cle 11142 [,)cico 13242 Οcbigo 48579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-bigo 48580 |
| This theorem is referenced by: elbigo 48583 |
| Copyright terms: Public domain | W3C validator |