Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigolo1 Structured version   Visualization version   GIF version

Theorem elbigolo1 43370
Description: A function (into the positive reals) is of order G(x) iff the quotient of the function and G(x) (also a function into the positive reals) is an eventually upper bounded function. (Contributed by AV, 20-May-2020.) (Proof shortened by II, 16-Feb-2023.)
Assertion
Ref Expression
elbigolo1 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 /f 𝐺) ∈ ≤𝑂(1)))

Proof of Theorem elbigolo1
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+)
2 rpssre 12144 . . . . . . . . . . . . 13 + ⊆ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℝ+ → ℝ+ ⊆ ℝ)
41, 3fssd 6305 . . . . . . . . . . 11 (𝐹:𝐴⟶ℝ+𝐹:𝐴⟶ℝ)
543ad2ant3 1126 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐹:𝐴⟶ℝ)
65adantr 474 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐹:𝐴⟶ℝ)
76ffvelrnda 6623 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
8 simplrr 768 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → 𝑚 ∈ ℝ)
9 simpl2 1201 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐺:𝐴⟶ℝ+)
109ffvelrnda 6623 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐺𝑦) ∈ ℝ+)
1110rpregt0d 12187 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦)))
127, 8, 113jca 1119 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))))
13 ledivmul2 11256 . . . . . . . 8 (((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))) → (((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚 ↔ (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
1413bicomd 215 . . . . . . 7 (((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
1512, 14syl 17 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
16 id 22 . . . . . . . . . . . . 13 (𝐺:𝐴⟶ℝ+𝐺:𝐴⟶ℝ+)
172a1i 11 . . . . . . . . . . . . 13 (𝐺:𝐴⟶ℝ+ → ℝ+ ⊆ ℝ)
1816, 17fssd 6305 . . . . . . . . . . . 12 (𝐺:𝐴⟶ℝ+𝐺:𝐴⟶ℝ)
19183ad2ant2 1125 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐺:𝐴⟶ℝ)
20 reex 10363 . . . . . . . . . . . . 13 ℝ ∈ V
2120ssex 5039 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
22213ad2ant1 1124 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 ∈ V)
235, 19, 223jca 1119 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
2423adantr 474 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
2524adantr 474 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
26 ffun 6294 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶ℝ+ → Fun 𝐺)
2726adantl 475 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → Fun 𝐺)
2821anim1ci 609 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺:𝐴⟶ℝ+𝐴 ∈ V))
29 fex 6761 . . . . . . . . . . . . . . . 16 ((𝐺:𝐴⟶ℝ+𝐴 ∈ V) → 𝐺 ∈ V)
3028, 29syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 𝐺 ∈ V)
31 0red 10380 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 0 ∈ ℝ)
32 frn 6297 . . . . . . . . . . . . . . . . 17 (𝐺:𝐴⟶ℝ+ → ran 𝐺 ⊆ ℝ+)
33 0nrp 12174 . . . . . . . . . . . . . . . . . . 19 ¬ 0 ∈ ℝ+
34 id 22 . . . . . . . . . . . . . . . . . . . 20 (ran 𝐺 ⊆ ℝ+ → ran 𝐺 ⊆ ℝ+)
3534ssneld 3823 . . . . . . . . . . . . . . . . . . 19 (ran 𝐺 ⊆ ℝ+ → (¬ 0 ∈ ℝ+ → ¬ 0 ∈ ran 𝐺))
3633, 35mpi 20 . . . . . . . . . . . . . . . . . 18 (ran 𝐺 ⊆ ℝ+ → ¬ 0 ∈ ran 𝐺)
37 df-nel 3076 . . . . . . . . . . . . . . . . . 18 (0 ∉ ran 𝐺 ↔ ¬ 0 ∈ ran 𝐺)
3836, 37sylibr 226 . . . . . . . . . . . . . . . . 17 (ran 𝐺 ⊆ ℝ+ → 0 ∉ ran 𝐺)
3932, 38syl 17 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶ℝ+ → 0 ∉ ran 𝐺)
4039adantl 475 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 0 ∉ ran 𝐺)
41 suppdm 43319 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐺 ∈ V ∧ 0 ∈ ℝ) ∧ 0 ∉ ran 𝐺) → (𝐺 supp 0) = dom 𝐺)
4227, 30, 31, 40, 41syl31anc 1441 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = dom 𝐺)
43 fdm 6299 . . . . . . . . . . . . . . 15 (𝐺:𝐴⟶ℝ+ → dom 𝐺 = 𝐴)
4443adantl 475 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → dom 𝐺 = 𝐴)
4542, 44eqtrd 2814 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = 𝐴)
46453adant3 1123 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐺 supp 0) = 𝐴)
4746eqcomd 2784 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 = (𝐺 supp 0))
4847adantr 474 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 = (𝐺 supp 0))
4948eleq2d 2845 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑦𝐴𝑦 ∈ (𝐺 supp 0)))
5049biimpa 470 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → 𝑦 ∈ (𝐺 supp 0))
51 refdivmptfv 43359 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑦) = ((𝐹𝑦) / (𝐺𝑦)))
5225, 50, 51syl2anc 579 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹 /f 𝐺)‘𝑦) = ((𝐹𝑦) / (𝐺𝑦)))
5352breq1d 4896 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚 ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
5415, 53bitr4d 274 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚))
5554imbi2d 332 . . . 4 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
5655ralbidva 3167 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
57562rexbidva 3241 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
58 simp1 1127 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 ⊆ ℝ)
59 ssidd 3843 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴𝐴)
60 elbigo2 43365 . . 3 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐴⟶ℝ ∧ 𝐴𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
6119, 58, 5, 59, 60syl22anc 829 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
62 refdivmptf 43355 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
6323, 62syl 17 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
6447feq2d 6277 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → ((𝐹 /f 𝐺):𝐴⟶ℝ ↔ (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ))
6563, 64mpbird 249 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 /f 𝐺):𝐴⟶ℝ)
66 ello12 14655 . . 3 (((𝐹 /f 𝐺):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝐹 /f 𝐺) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
6765, 58, 66syl2anc 579 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → ((𝐹 /f 𝐺) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
6857, 61, 673bitr4d 303 1 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 /f 𝐺) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wnel 3075  wral 3090  wrex 3091  Vcvv 3398  wss 3792   class class class wbr 4886  dom cdm 5355  ran crn 5356  Fun wfun 6129  wf 6131  cfv 6135  (class class class)co 6922   supp csupp 7576  cr 10271  0cc0 10272   · cmul 10277   < clt 10411  cle 10412   / cdiv 11032  +crp 12137  ≤𝑂(1)clo1 14626   /f cfdiv 43350  Οcbigo 43360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-supp 7577  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-rp 12138  df-ico 12493  df-lo1 14630  df-fdiv 43351  df-bigo 43361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator