Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigolo1 Structured version   Visualization version   GIF version

Theorem elbigolo1 45791
Description: A function (into the positive reals) is of order G(x) iff the quotient of the function and G(x) (also a function into the positive reals) is an eventually upper bounded function. (Contributed by AV, 20-May-2020.) (Proof shortened by II, 16-Feb-2023.)
Assertion
Ref Expression
elbigolo1 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 /f 𝐺) ∈ ≤𝑂(1)))

Proof of Theorem elbigolo1
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+)
2 rpssre 12666 . . . . . . . . . . . . 13 + ⊆ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℝ+ → ℝ+ ⊆ ℝ)
41, 3fssd 6602 . . . . . . . . . . 11 (𝐹:𝐴⟶ℝ+𝐹:𝐴⟶ℝ)
543ad2ant3 1133 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐹:𝐴⟶ℝ)
65adantr 480 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐹:𝐴⟶ℝ)
76ffvelrnda 6943 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
8 simplrr 774 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → 𝑚 ∈ ℝ)
9 simpl2 1190 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐺:𝐴⟶ℝ+)
109ffvelrnda 6943 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐺𝑦) ∈ ℝ+)
1110rpregt0d 12707 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦)))
127, 8, 113jca 1126 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))))
13 ledivmul2 11784 . . . . . . . 8 (((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))) → (((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚 ↔ (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
1413bicomd 222 . . . . . . 7 (((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
1512, 14syl 17 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
16 id 22 . . . . . . . . . . . . 13 (𝐺:𝐴⟶ℝ+𝐺:𝐴⟶ℝ+)
172a1i 11 . . . . . . . . . . . . 13 (𝐺:𝐴⟶ℝ+ → ℝ+ ⊆ ℝ)
1816, 17fssd 6602 . . . . . . . . . . . 12 (𝐺:𝐴⟶ℝ+𝐺:𝐴⟶ℝ)
19183ad2ant2 1132 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐺:𝐴⟶ℝ)
20 reex 10893 . . . . . . . . . . . . 13 ℝ ∈ V
2120ssex 5240 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
22213ad2ant1 1131 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 ∈ V)
235, 19, 223jca 1126 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
2423adantr 480 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
2524adantr 480 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
26 ffun 6587 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶ℝ+ → Fun 𝐺)
2726adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → Fun 𝐺)
2821anim1ci 615 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺:𝐴⟶ℝ+𝐴 ∈ V))
29 fex 7084 . . . . . . . . . . . . . . . 16 ((𝐺:𝐴⟶ℝ+𝐴 ∈ V) → 𝐺 ∈ V)
3028, 29syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 𝐺 ∈ V)
31 0red 10909 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 0 ∈ ℝ)
32 frn 6591 . . . . . . . . . . . . . . . . 17 (𝐺:𝐴⟶ℝ+ → ran 𝐺 ⊆ ℝ+)
33 0nrp 12694 . . . . . . . . . . . . . . . . . . 19 ¬ 0 ∈ ℝ+
34 id 22 . . . . . . . . . . . . . . . . . . . 20 (ran 𝐺 ⊆ ℝ+ → ran 𝐺 ⊆ ℝ+)
3534ssneld 3919 . . . . . . . . . . . . . . . . . . 19 (ran 𝐺 ⊆ ℝ+ → (¬ 0 ∈ ℝ+ → ¬ 0 ∈ ran 𝐺))
3633, 35mpi 20 . . . . . . . . . . . . . . . . . 18 (ran 𝐺 ⊆ ℝ+ → ¬ 0 ∈ ran 𝐺)
37 df-nel 3049 . . . . . . . . . . . . . . . . . 18 (0 ∉ ran 𝐺 ↔ ¬ 0 ∈ ran 𝐺)
3836, 37sylibr 233 . . . . . . . . . . . . . . . . 17 (ran 𝐺 ⊆ ℝ+ → 0 ∉ ran 𝐺)
3932, 38syl 17 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶ℝ+ → 0 ∉ ran 𝐺)
4039adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 0 ∉ ran 𝐺)
41 suppdm 45739 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐺 ∈ V ∧ 0 ∈ ℝ) ∧ 0 ∉ ran 𝐺) → (𝐺 supp 0) = dom 𝐺)
4227, 30, 31, 40, 41syl31anc 1371 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = dom 𝐺)
43 fdm 6593 . . . . . . . . . . . . . . 15 (𝐺:𝐴⟶ℝ+ → dom 𝐺 = 𝐴)
4443adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → dom 𝐺 = 𝐴)
4542, 44eqtrd 2778 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = 𝐴)
46453adant3 1130 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐺 supp 0) = 𝐴)
4746eqcomd 2744 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 = (𝐺 supp 0))
4847adantr 480 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 = (𝐺 supp 0))
4948eleq2d 2824 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑦𝐴𝑦 ∈ (𝐺 supp 0)))
5049biimpa 476 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → 𝑦 ∈ (𝐺 supp 0))
51 refdivmptfv 45780 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑦) = ((𝐹𝑦) / (𝐺𝑦)))
5225, 50, 51syl2anc 583 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹 /f 𝐺)‘𝑦) = ((𝐹𝑦) / (𝐺𝑦)))
5352breq1d 5080 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚 ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
5415, 53bitr4d 281 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚))
5554imbi2d 340 . . . 4 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
5655ralbidva 3119 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
57562rexbidva 3227 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
58 simp1 1134 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 ⊆ ℝ)
59 ssidd 3940 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴𝐴)
60 elbigo2 45786 . . 3 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐴⟶ℝ ∧ 𝐴𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
6119, 58, 5, 59, 60syl22anc 835 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
62 refdivmptf 45776 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
6323, 62syl 17 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
6447feq2d 6570 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → ((𝐹 /f 𝐺):𝐴⟶ℝ ↔ (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ))
6563, 64mpbird 256 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 /f 𝐺):𝐴⟶ℝ)
66 ello12 15153 . . 3 (((𝐹 /f 𝐺):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝐹 /f 𝐺) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
6765, 58, 66syl2anc 583 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → ((𝐹 /f 𝐺) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
6857, 61, 673bitr4d 310 1 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 /f 𝐺) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wnel 3048  wral 3063  wrex 3064  Vcvv 3422  wss 3883   class class class wbr 5070  dom cdm 5580  ran crn 5581  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255   supp csupp 7948  cr 10801  0cc0 10802   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  +crp 12659  ≤𝑂(1)clo1 15124   /f cfdiv 45771  Οcbigo 45781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-supp 7949  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-rp 12660  df-ico 13014  df-lo1 15128  df-fdiv 45772  df-bigo 45782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator