Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigolo1 Structured version   Visualization version   GIF version

Theorem elbigolo1 48550
Description: A function (into the positive reals) is of order G(x) iff the quotient of the function and G(x) (also a function into the positive reals) is an eventually upper bounded function. (Contributed by AV, 20-May-2020.) (Proof shortened by II, 16-Feb-2023.)
Assertion
Ref Expression
elbigolo1 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 /f 𝐺) ∈ ≤𝑂(1)))

Proof of Theorem elbigolo1
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+)
2 rpssre 12966 . . . . . . . . . . . . 13 + ⊆ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℝ+ → ℝ+ ⊆ ℝ)
41, 3fssd 6708 . . . . . . . . . . 11 (𝐹:𝐴⟶ℝ+𝐹:𝐴⟶ℝ)
543ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐹:𝐴⟶ℝ)
65adantr 480 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐹:𝐴⟶ℝ)
76ffvelcdmda 7059 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
8 simplrr 777 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → 𝑚 ∈ ℝ)
9 simpl2 1193 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐺:𝐴⟶ℝ+)
109ffvelcdmda 7059 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐺𝑦) ∈ ℝ+)
1110rpregt0d 13008 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦)))
127, 8, 113jca 1128 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))))
13 ledivmul2 12069 . . . . . . . 8 (((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))) → (((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚 ↔ (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
1413bicomd 223 . . . . . . 7 (((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
1512, 14syl 17 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
16 id 22 . . . . . . . . . . . . 13 (𝐺:𝐴⟶ℝ+𝐺:𝐴⟶ℝ+)
172a1i 11 . . . . . . . . . . . . 13 (𝐺:𝐴⟶ℝ+ → ℝ+ ⊆ ℝ)
1816, 17fssd 6708 . . . . . . . . . . . 12 (𝐺:𝐴⟶ℝ+𝐺:𝐴⟶ℝ)
19183ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐺:𝐴⟶ℝ)
20 reex 11166 . . . . . . . . . . . . 13 ℝ ∈ V
2120ssex 5279 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
22213ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 ∈ V)
235, 19, 223jca 1128 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
2423adantr 480 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
2524adantr 480 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
26 ffun 6694 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶ℝ+ → Fun 𝐺)
2726adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → Fun 𝐺)
2821anim1ci 616 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺:𝐴⟶ℝ+𝐴 ∈ V))
29 fex 7203 . . . . . . . . . . . . . . . 16 ((𝐺:𝐴⟶ℝ+𝐴 ∈ V) → 𝐺 ∈ V)
3028, 29syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 𝐺 ∈ V)
31 0red 11184 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 0 ∈ ℝ)
32 frn 6698 . . . . . . . . . . . . . . . . 17 (𝐺:𝐴⟶ℝ+ → ran 𝐺 ⊆ ℝ+)
33 0nrp 12995 . . . . . . . . . . . . . . . . . . 19 ¬ 0 ∈ ℝ+
34 id 22 . . . . . . . . . . . . . . . . . . . 20 (ran 𝐺 ⊆ ℝ+ → ran 𝐺 ⊆ ℝ+)
3534ssneld 3951 . . . . . . . . . . . . . . . . . . 19 (ran 𝐺 ⊆ ℝ+ → (¬ 0 ∈ ℝ+ → ¬ 0 ∈ ran 𝐺))
3633, 35mpi 20 . . . . . . . . . . . . . . . . . 18 (ran 𝐺 ⊆ ℝ+ → ¬ 0 ∈ ran 𝐺)
37 df-nel 3031 . . . . . . . . . . . . . . . . . 18 (0 ∉ ran 𝐺 ↔ ¬ 0 ∈ ran 𝐺)
3836, 37sylibr 234 . . . . . . . . . . . . . . . . 17 (ran 𝐺 ⊆ ℝ+ → 0 ∉ ran 𝐺)
3932, 38syl 17 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶ℝ+ → 0 ∉ ran 𝐺)
4039adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 0 ∉ ran 𝐺)
41 suppdm 48503 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐺 ∈ V ∧ 0 ∈ ℝ) ∧ 0 ∉ ran 𝐺) → (𝐺 supp 0) = dom 𝐺)
4227, 30, 31, 40, 41syl31anc 1375 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = dom 𝐺)
43 fdm 6700 . . . . . . . . . . . . . . 15 (𝐺:𝐴⟶ℝ+ → dom 𝐺 = 𝐴)
4443adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → dom 𝐺 = 𝐴)
4542, 44eqtrd 2765 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = 𝐴)
46453adant3 1132 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐺 supp 0) = 𝐴)
4746eqcomd 2736 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 = (𝐺 supp 0))
4847adantr 480 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 = (𝐺 supp 0))
4948eleq2d 2815 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑦𝐴𝑦 ∈ (𝐺 supp 0)))
5049biimpa 476 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → 𝑦 ∈ (𝐺 supp 0))
51 refdivmptfv 48539 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑦) = ((𝐹𝑦) / (𝐺𝑦)))
5225, 50, 51syl2anc 584 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹 /f 𝐺)‘𝑦) = ((𝐹𝑦) / (𝐺𝑦)))
5352breq1d 5120 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚 ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
5415, 53bitr4d 282 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚))
5554imbi2d 340 . . . 4 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
5655ralbidva 3155 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
57562rexbidva 3201 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
58 simp1 1136 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 ⊆ ℝ)
59 ssidd 3973 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴𝐴)
60 elbigo2 48545 . . 3 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐴⟶ℝ ∧ 𝐴𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
6119, 58, 5, 59, 60syl22anc 838 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
62 refdivmptf 48535 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
6323, 62syl 17 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
6447feq2d 6675 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → ((𝐹 /f 𝐺):𝐴⟶ℝ ↔ (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ))
6563, 64mpbird 257 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 /f 𝐺):𝐴⟶ℝ)
66 ello12 15489 . . 3 (((𝐹 /f 𝐺):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝐹 /f 𝐺) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
6765, 58, 66syl2anc 584 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → ((𝐹 /f 𝐺) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
6857, 61, 673bitr4d 311 1 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 /f 𝐺) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3030  wral 3045  wrex 3054  Vcvv 3450  wss 3917   class class class wbr 5110  dom cdm 5641  ran crn 5642  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390   supp csupp 8142  cr 11074  0cc0 11075   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  +crp 12958  ≤𝑂(1)clo1 15460   /f cfdiv 48530  Οcbigo 48540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-supp 8143  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-rp 12959  df-ico 13319  df-lo1 15464  df-fdiv 48531  df-bigo 48541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator